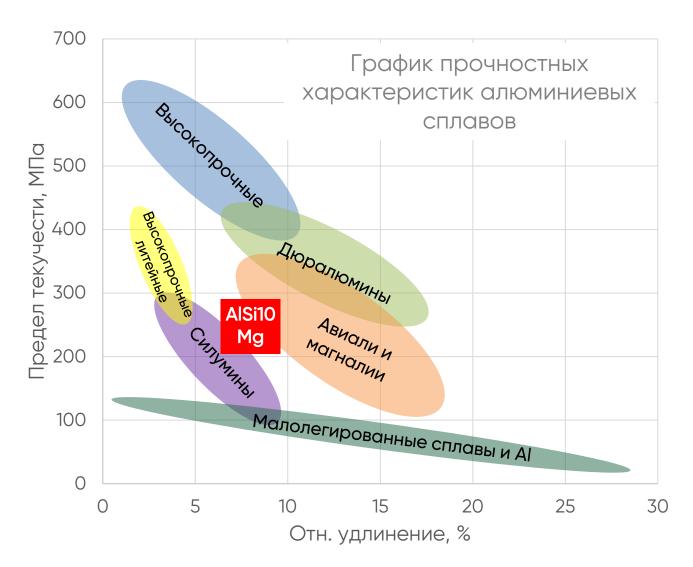
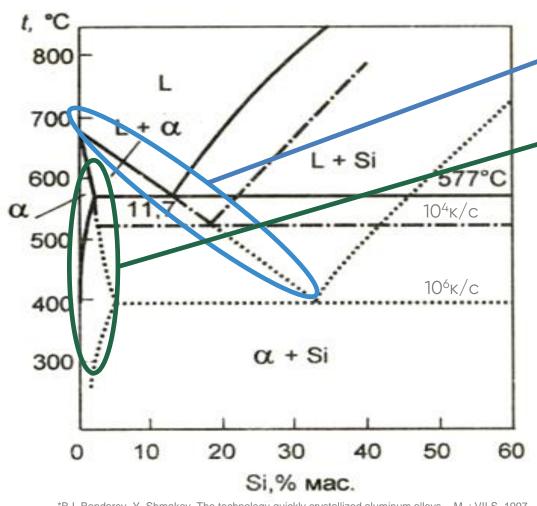

Развитие отечественных алюминиевых материалов для аддитивного производства. Перспективы и преимущества

К сожалению, не все традиционные сплавы могут быть использованы для аддитивного производства



Существующие решения не обеспечивают конкуренцию с традиционными алюминиевыми материалами



- AlSi10Mg (PC-300) высокотехнологичный сплав для использования в аддитивном производстве.
- Является хорошей заменой для силуминов;
- Применение в качестве замены деформируемых сплавов ограничено, что не позволяет в полной мере раскрыть потенциал аддитивного производства;
- Создано семейство отечественных металлопорошковых композиции под маркой РС-ХХХ, являющиеся альтернативой традиционным алюминиевым сплавам и другим конструкционным материалам;

Аддитивные технологии позволяют по новому проектировать материалы

*B.I. Bondarev, Y. Shmakov. The technology quickly crystallized aluminum alloys. - M .: VILS, 1997.

Изменение точек фазовых превращений позволяет широко использовать недоступные ранее легирующие элементы;

Расширение зоны максимальной растворимости легирующих элементов;

Уменьшение на порядок размеров фаз обеспечивает дополнительные эффекты упрочнения

міказ тезсам

міказ тезсам

міказ тезсам

ИЛМиТ

Отечественные алюминиевые порошки для аддитивных технологий

РС-300 Базовые сплавы

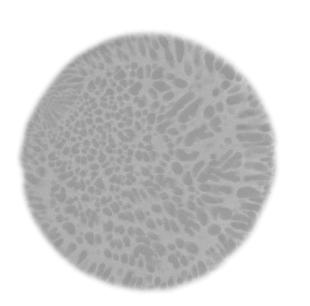
РС-356 Сплавы для ненагруженных деталей

РС-553 Среднепрочные и высокопрочные сплавы

РС-320 Сплавы для деталей, работающих под нагрузкой

РС-770К Особопрочный композит

РС-333 Функциональные сплавы


РС-355 Сплавы для деталей с особыми требованиями

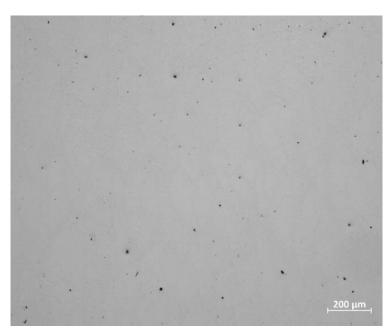
РС-230 Жаропрочные сплавы

РС-970 Сплавы для деталей, работающих в условиях

РС-900 повышенных температур

Отечественные алюминиевые порошки для аддитивных технологий

Все марки порошков производятся серийно в соответствии с ТУ 24.42.00-002-44669951-2019 из отечественного сырья и материалов


РС-300, РС-356, РС-320 и РС-553 включены в ГОСТ Р 71758-2024 «Аддитивные технологии. Изделия из алюминиевых сплавов, изготовленные методом селективного лазерного сплавления. Общие технические условия»

Сплавы РС-300, РС-356, РС-320 и РС-553 паспортизованы АО «Композит» для применения в ракетно-космической технике

Высокопроизводительный сплав РС-320

Сплав на базе системы Al-Si с высокой скоростью печати для средненагруженных деталей

Пористость <0,2%

Сплав РС-320 паспортизован АО «Композит»

АК9ч отливка

PC-320

T6

T6

Отжиг

Предел прочности, МПа

250

370

430

Предел текучести, МПа

200

300

240

Относительное удлинение, %

3,5

6,0

4,0

Многоцикловая усталость (Kt=-1, $N=1\cdot 10^7$)), МПа

75

135

110

Аддитивные технологии позволяют сократить время производства алюминиевых деталей

Корпус раздаточной коробки

Алюминий АЛ34

22

ДНЯ

Цикл изготовления

Аддитивное производство

> Алюминий PC-320

> > **56** часов

Цикл изготовления

Высокопрочный, коррозионно-стойкий сплав РС-553

Высокопрочный сплав Al-Mg-Sc не требующий закалки с высокой коррозионной стойкостью

Д16 гост 21488

PC-553

Закалка и естественное старение

Отжиг

Предел прочности, МПа

410

470

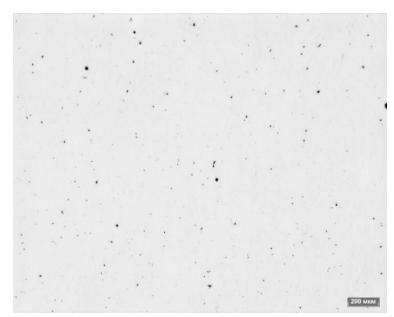
Предел текучести, МПа

295

435

Относительное удлинение, %

10


14

Многоцикловая усталость (Kt=-1), МПа

105

 $(N = 2 \cdot 10^7)$

 $(N = 2 \cdot 10^7)$

Пористость <0,25 %

Сплав РС-320 паспортизован АО «Композит»

Новые материалы позволяют оптимизировать вес изделия, а технологии позволяют кастомизировать детали

Традиционная технология (высокопрочный AI)

250_{r.}

Вес детали

10

дней

Цикл изготовления

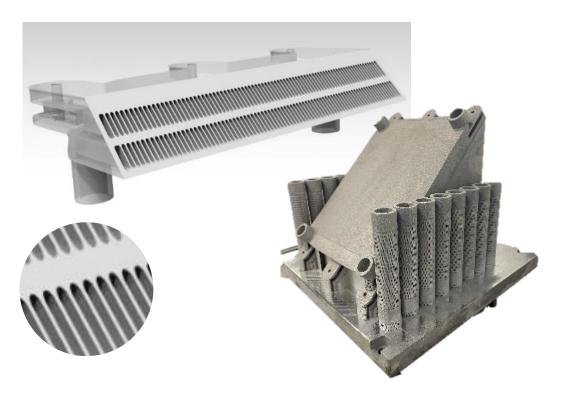
Рама для спидскейтинга (создана с учетом строения тела роллера)

Аддитивное производство (PC-553)

209 г. Вес детали

3+5

дней


Цикл изготовления

Рамы были успешно опробованы на Чемпионате и Первенстве России по роллер спорту в Челябинске 15–18 августа 2025 года.

Сплав с высокой теплопроводностью РС-333

Среднепрочный сплав Al-Mg-Si с высокими показателями теплопроводности, адаптированный под 3D печать

Режим оптимизирован для печати тонких структур теплообменных аппаратов

6061 ASTM B221M

PC-333

T6

Отжиг/Т6

Предел прочности, МПа

260

285

Предел текучести, МПа

240

230

Относительное удлинение, %

8

14

Теплопроводность, Вт/м⋅К

167

185

Аддитивные технологии позволяют сократить время производства

Традиционная технология

Алюминий АМг6

5 мес. Цикл изготовления

60 шт. Количество сварных соединений

Расход материала на 1 деталь

Аддитивное производство

Алюминий РС- 356

60,5_{4.}

Цикл изготовления

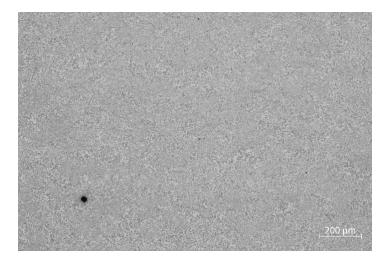
0 шт.

Количество сварных соединений

1,8 KF

Расход материала на 1 деталь

Крыльчатка вентилятора


Сплав с низким коэффициентом теплового расширения РС-355

повышенным содержанием Si ДЛЯ применений, где требуются контроли

PC-355

Пористость <0,12 %

Отжиг Отжиг Предел прочности, МПа

225

325

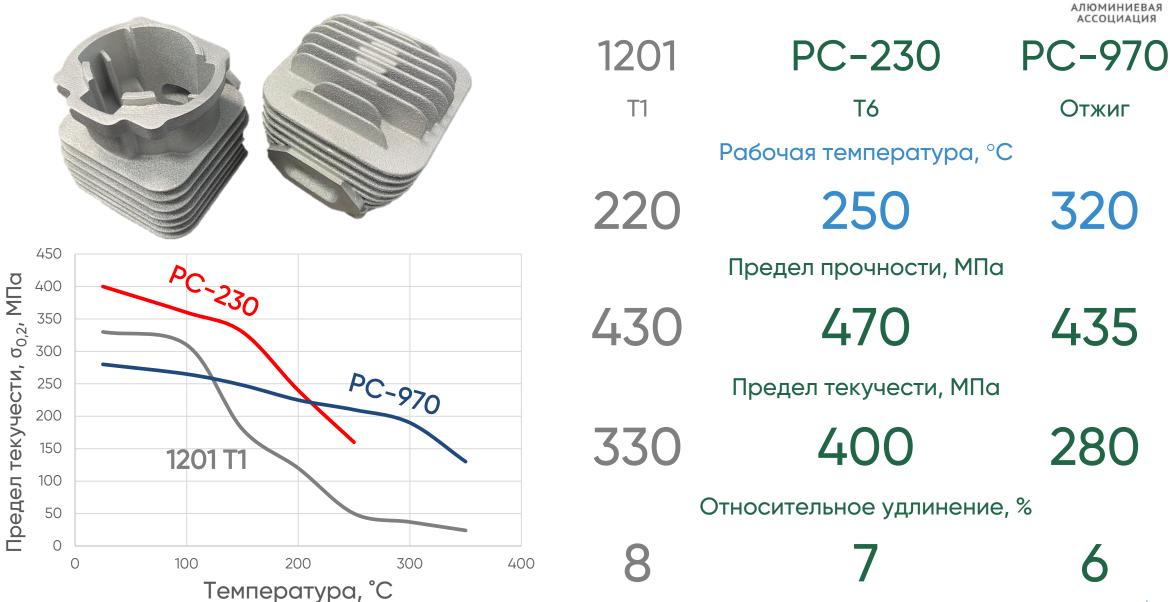
Предел текучести, МПа

215

245

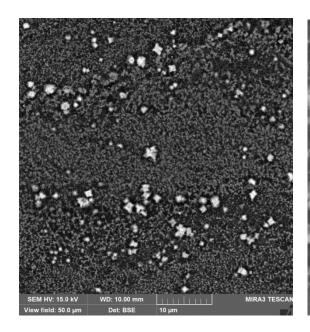
Относительное удлинение, %

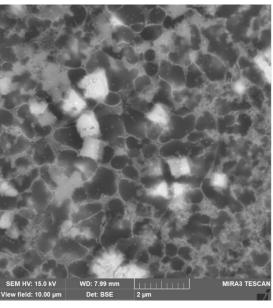
0,8


0,6

ТКЛР 10-6·1/К (20-200°C)

14,5–15,5 13,7–14,6


Жаропрочные алюминиевые сплавы для 3D-печати

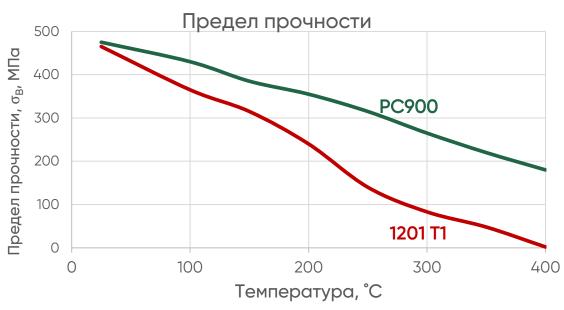


РС-900 - Жаропрочный интерметаллидный сплав нового поколения

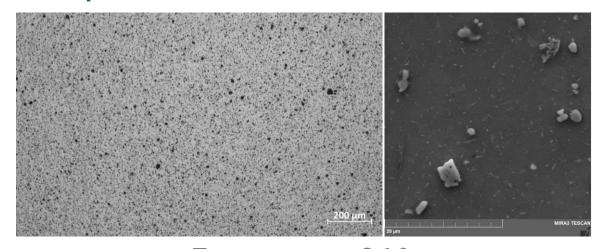
77 ГПа 175 МПа 95 МПа 145 МПа

Модуль упругости

Предел прочности при 400 °C


Предел длительной прочности на базе 1000 часов при 350 °C

Предел ограниченной выносливости на базе 1·10⁷ циклов



Успешные испытания при 115000 об/мин и температуре 300 °C

PC-770K — Высокопрочный металломатричный композиционный материал

Количество армирующих добавок

Модуль упругости

Предел прочности

Удельная прочность

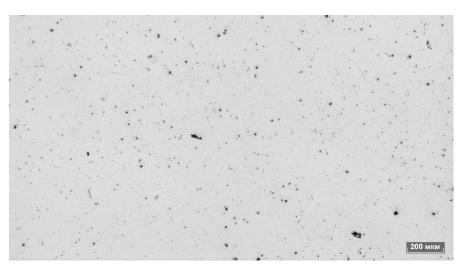
Осваивается печать модифицированным порошком Д16

Завершены лабораторные исследования по возможности адаптации порошка Д16 к 3D печати. Далее работы будут продолжены на промышленных порошках.

	Основные элементы				Примеси					
	Cu	Mn	Mg	Si	Fe	Cr	Zn	Ti + Zr	Проч Каждый	чие Суммс
Требования ГОСТ 4784	3,8-4,9	0,3-0,9								
3D печать	4,15	0,64	1,80	0,19	0,5	0,08	0,01	0,16	0,05	0,1

Закалка и естественное старение (T1)

Предел прочности, МПа


430

Предел текучести, МПа

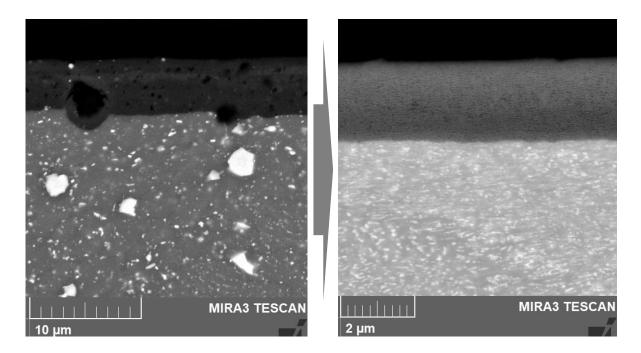
325

Относительное удлинение, %

6,0

Уровень пористости – 0,3%

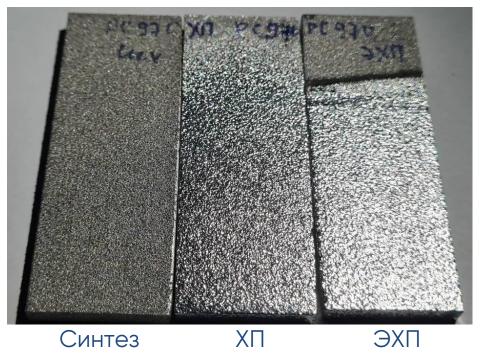
Отсутствуют горячие трещины



Постобработка алюминиевых сплавов после СЛС

АНОДИРОВАНИЕ

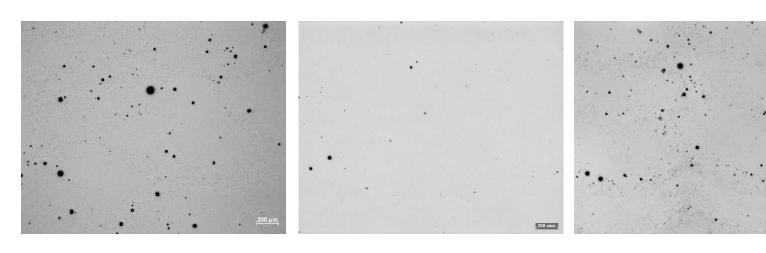
Разработаны режимы для сернокислого электролита


PC-553 PC-970

Получены равномерные анодные покрытия

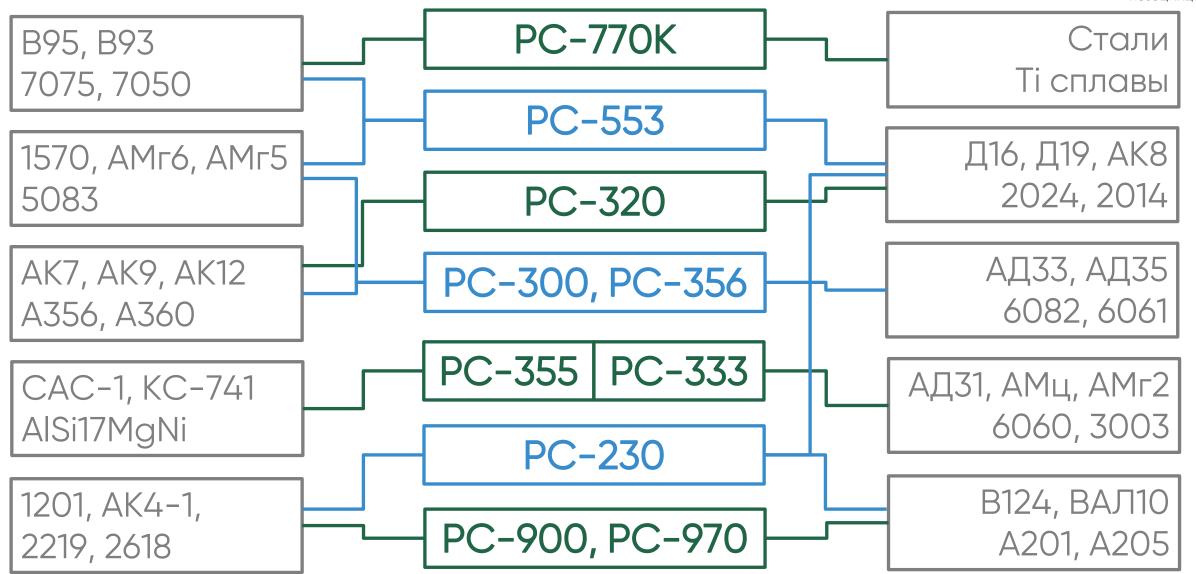
ХИМИЧЕСКАЯ и ЭЛЕКТРОХИМИЧЕСКАЯ ПОЛИРОВКА Разработаны режимы

PC-553 PC-970 PC-230


Снижение Ra с 12 мкм до 5 мкм

Прямое лазерное выращивание из алюминиевых сплавов

Совместно с КОМПОЗИТ ведется успешная работа по разработке процесс-параметров ПЛВ для сплавов серии РС. Из сплава РС-320 успешно выращены опытные образцы деталей, которые прошли стендовые испытания.



	PC-320	PC-553	PC-230
Пористость, %	0,8	0,5	0,8
Предел прочности, МПа	382	В разработке	430
Предел текучести, МПа	296	в разрасотке	390

Среди металлопорошковых композиций можно найти замену традиционным материалам

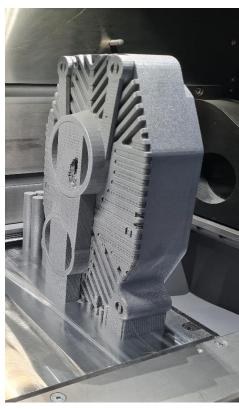
Проволочные материалы для технологии WAAM

Создается линейка отечественных композиций для технологий проволочной печати с целью обеспечения различных отраслей современными решениями

сограслей современны				
Мировой рынок				
S ENIGMA				
DEJIMA AMLEDO				
5087				
5183				
5356				
ER 6061				
ER 4220				
ER 205C				
ER 2319C				
2024				
5183+0.2%Sc				
AlMgSc				

ER 7075

D	іми решения	МИ						
	AK94 FOCT 1583-93	4070A В разработке	АМг6 гост 21631	1580	Д16А гост 21631	Al-Cu (Т1) В разработке		
ĵ	Литье Т6	WAAM (T1)	Лист (М)	WAAM (M)	Лист (Т)	WAAM (T1)		
		Предел прочности, МПа						
	235	280	315	335	425	405		
	Предел текучести, МПс							
	200	220	157	190	275	310		
	Относительное удлинение, %							
	3,5	6,0	15,0	18,0	10,0	6,0		
		литейных вых сплавов	1	ермически мых сплавов	Замена дюралей и среднепрочных сплавов /			


Аддитивный центр Алюминиевой Ассоциации

Центр аддитивных технологий алюминиевой ассоциации предлагает сотрудничество для опытного, единичного или серийного производства алюминиевых деталей по технологии СЛС (SLM)

Широкий спектр используемых материалов, парк оборудования 3D-печати и пост-обработки позволяют оптимально решать производственные задачи Заказчиков.

Готовы к печати тестовых образцов и изделий для апробации

3D-Принтер

EOS M 290

Зона печати: 250 x 250 x 305 мм Кол-во лазеров: 1 x 400 Вт

BLT-S400

Зона печати: 400 x 250 x 400 мм Кол-во лазеров: 2 x 500 Вт

FS350M-4

Зона печати: 425 × 350 × 400 мм Кол-во лазеров: 4 x 500 Вт

3D-Принтер

FS422M-4-H

Зона печати: 425 × 425 × 550 мм Кол-во лазеров: 4 x 500 Вт

По всем вопросам обращаться по эл. почте:

Science@aluminas.ru