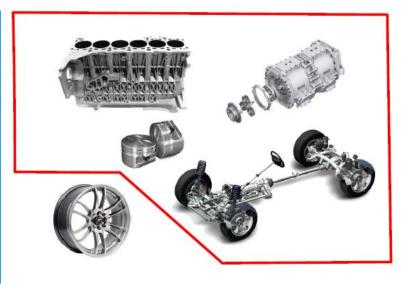


АЛЮМИНИЙ ДЛЯ ИННОВАЦИЙ В АВТОПРОМЕ

Использование алюминия в автомобилестроении

Основной драйвер - снижение углеродного следа

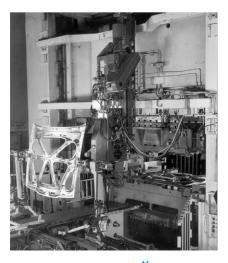
Daimler Ambition 2039: модельный ряд с нулевым выбросом CO2


Применение алюминия в автомобилестроении

Конструктивные элементы

Компоненты

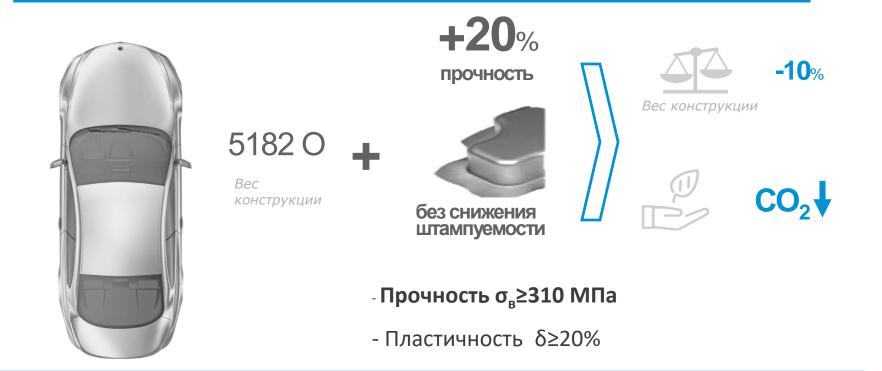
Применение алюминия в автомобилестроении



Алюминиевый кузов Range Rover Sport

Профиль жесткости, проходящий внутри алюминиевого кузова для Ford F-150

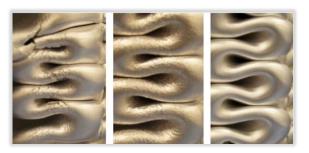
Штамповка внутренней панели капота


Новый сплав для автолиста

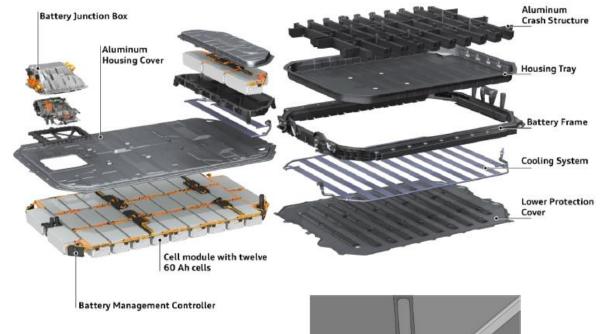
Требования к сплавам для автолиста:

- ✓ Хорошая штампуемость
- ✓ Высокая прочность
- ✓ Коррозионная стойкость

Малые добавки Sc:

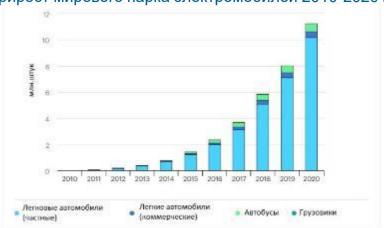

- Повышение механических свойств без существенной потери пластичности.

Новые алюминиевые сплавы для Crash Management Systems

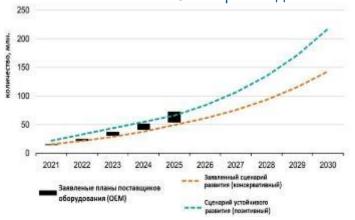

- Более прочный сплав для бамперов и аккумуляторных отсеков – повышение безопасности;
- Уменьшение веса различных типов транспортных средств на 15-30%;
- Снижение углеродного следа

Требования к материалу

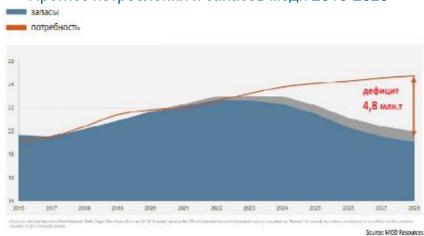
- ✓ Предел прочности ≥ 450 МПа;
- **√** Пластичность;
- **√** Технологичность (экструдируемость)


Методы соединения

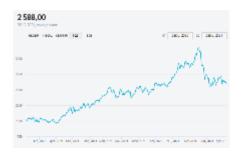
- Точечная сварка
- Сварка трением с перемешиванием



Сплав для использования в электропроводящих шинах


Прирост мирового парка электромобилей 2010-2020 гг.

Прогноз производства легковых электромобилей и заявление планы ОЕМ-производителей


Прогноз потребления и запасов меди 2016-2028

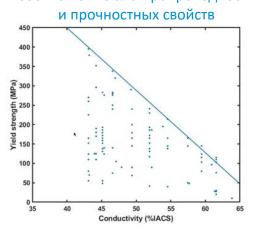
LME.Copper, USD за тонну

LME.Aluminium, USD за тонну

Сплав для использования в электропроводящих шинах

- Замена меди в шинах подключения автомобильных батарей
- Снижение веса электромобилей
- Снижение стоимости автомобильной проводки
- Снижение углеродного следа

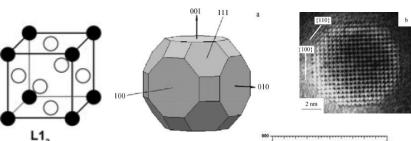
Партнёр проекта:

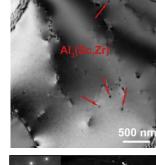


Сплав для использования в электропроводящих шинах

Требования к материалу:

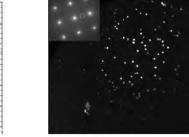
- 1. Прочность σв≥175 МПа;
- 2. Пластичность δ ≥10%;
- 3. Электропроводность ≥ 60,5 % IACS;
- 4. Рабочий диапазон температур до 150 °C;
- 5. Высокие усталостные характеристик.


Соотношение электропроводности



Малые добавки Sc и Zr

- Выделение нано-дисперсоидов ${\rm Al_3Sc}$ и ${\rm Al_3Zr}$ с решеткой типа ${\rm L1_2}$
- Повышение механических свойств.
- Снижении электропроводности незначительное.
- Подавляется рекристаллизация, повышается термостойкость.


Структура дисперсоидов

Электротехнические марки алюминия

Свойства	Зарубежные марки			Отечественные марки	
	(ASTM B236, B317, B241, B429)			(FOCT 15176, FOCT 11069)	
	1350	6101	6063	А7Е, А5Е, АДО	АД31, АД31Е
% IACS	61-62	60-61	53-55	60-62	53-55
σ _в , ΜΠа	60-80	100-120	150-180	60-80	130-180

- 0,2 MKM

Блоки цилиндров из алюминиевых сплавов для автотранспорта

ПРЕИМУЩЕСТВА

- ✓ Снижение массы на 40-55 %
- ✓ Лучшее охлаждение
- ✓ Меньшее термическое расширение
- ✓ Любые способы литья
- √ Снижение расхода топлива

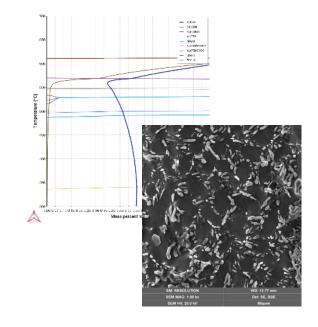
ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ

- ✓ Дизельные двигатели
- ✓ Бензиновые двигатели
- ✓ Гибридные двигатели

мировой опыт

- ✓ Ford EcoBoost 3,5L 400 л.с. (2011 г)
- ✓ Daimler OM 654 245 л.с. (2016 г.)
- ✓ Chevrolet Duramax 3L- 277 л.с. (2019 г.)

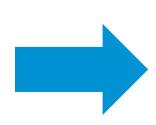
Алюминиевые сплавы с повышенной жаропрочностью


ТРЕБОВАНИЯ

- ✓ Рабочая температура >250 °C
- ✓ Достаточная прочность
- ✓ Высокая теплопроводность
- ✓ Технологичность в литье
- ✓ Цена сравнимая с АК6М2 или AS7U3

РЕШЕНИЕ

- ✓ Разработка алюминиевых сплавов на базе литейных силуминов
- ✓ Наличие высокотермостабильных фаз
- ✓ Легирование промышленно доступными и недорогими компонентами



Алюминиевые колеса для грузового автотранспорта

Литье под низким давлением

Литье с раскаткой обода

ScA\ution

Новые алюминиевые сплавы для кованых колесных дисков

Сплав 6ХХХ серии

+ 15 % предел прочности

+ 5-10%

технологичность

- 5-10%

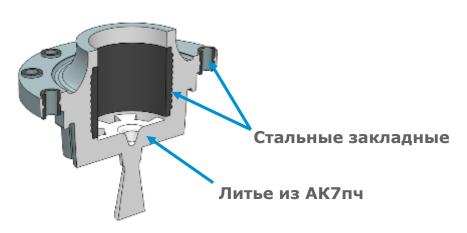
снижение усилия ковки **-10**%

Требования к материалу

- ✓ Предел прочности ≥ 300 МПа;
- ✓ Отн. удлинение >7%;

Сплав 7ХХХ серии

- Более высокая прочность по сравнению со сплавом 7075;
- Сокращение веса колесного диска на 25 % (для диска 21");
- Возможность увеличения диаметра диска вплоть до 23";
- Повышение экологичности транспортных средств


Требования к материалу

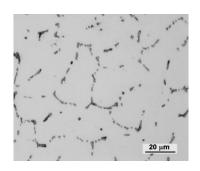
- ✓ Предел прочности ≥ 434 МПа;
- √ Снижение массы колеса с 12 до 9 кг;

Алюминиевые ступицы для грузового автотранспорта

Вариант исполнения для литья под низким давлением

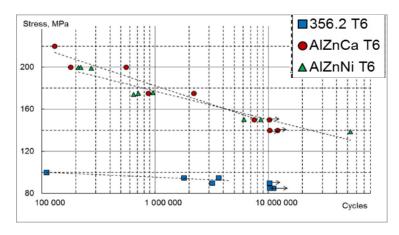
Алюминиевая ступица с нагрузкой до 5 тонн разработки Conmet для совместного использования с алюминиевым колесом

Алюминиевая ступица разработки BPW дает возможность увеличить нагрузку на 18 кг на ось


НОВЫЕ СПЛАВЫ ДЛЯ ЛИТЬЯ ПОД НИЗКИМ ДАВЛЕНИЕМ И ГРАВИТАЦИОННОГО ЛИТЬЯ

Применение – для высоконагруженных структурных автокомпонентов и колесных дисков

Текущая стадия – промышленное опробование


Преимущества в сравнении с сплавами типа AlSi7Mg0,3:

- +30% увеличение предела текучести;
- +55% увеличение предела выносливости;
- Хорошие литейные свойства

Работа с нестандартными системами легирования позволила получить новый материал, который существенно отличается от традиционных решений

Применение:

- Элементы подвески (поворотный кулак, рычаг) как альтернатива стали, чугуну и существующим алюминиевым сплавам
- Колесные диски

НОВЫЕ СПЛАВЫ ДЛЯ ЛИТЬЯ ПОД ДАВЛЕНИЕМ

Применение – в автомобильной промышленности и изделиях бытовой техники.

Текущая стадия – промышленное опробование

Преимущества:

- Высокие прочностные свойства в литом состоянии (F)
- Хорошая коррозионная стойкость
- Отсутствует операция закалки, что позволяет значительно снизить себестоимость изделий.

Образцы отливок успешно прошли испытания у Европейского автопроизводителя

Коррозионные испытания Al-Ca AlSi10MgMn

Применение в автомобилестроении:

Структурные компоненты – отливки «стакан амортизатора», «корзина аккумулятора»

www.rusal.com www.aluminiumleader.com

Headquarters in Moscow:

1 Vasilisy Kozhinoi St., Park Pobedy – Victory Park

Business Center,

121096, Moscow, Russia

Phone: +7 (495) 720-51-70

+7 (495) 720-51-71

Fax: +7 (495) 745-70-46

For client queries:

RUSAL Marketing GmbH, Metalli Center Baarerstrasse 22

6300 Zug Switzerland

Phone: +41 (41) 560 98 00 Fax: +41 (41) 560 98 01

E-mail: info-zug@rusal.com