

DEVELOPMENT OF AN INNOVATIVE «SUPER» SEAL WITH IMPROVED ACID CORROSION RESISTANCE AND NEW FEATURE: RESISTANCE TO ALKALI

Authors: Fabio Vincenzi Company: Italtecno Srl

amstime.com

MARKET DEMANDS SOME EXAMPLES:

2

CAR WASHING RESISTANCE TO ALKALI DETERGENTS

DISHWASHER RESISTANCE TO ALKALI DETERGENTS

SALT SPRAY RESISTANCE WITH ECOLOGICAL PROCESSES

NICKEL-FREE AND ECOLOGICAL PROCESS

Alkaline detergents are the best overall cleaners and can remove most soils

"NEW" TECHNOLOGIES...

United States Patent [19] [11] Patent Number: 4,549,910 Barba [45] Date of Patent: Oct. 29, 1985 [54] PROCESS FOR THE PROTECTIVE SEALING OF ANODIC ALUMINUM OXIDE AND ITS ALLOYS WHICH CONFERS A PARTICULAR RESISTANCE TO AGRESSIVE ALKALINE AGENTS 4,225,398 9/1980 Hasegawa et al. 204/33 4,310,390 1/1982 Bradley et al. 204/37 R [75] Inventor: Walter D. Barba, Modena, Italy 73 Assignee: Aeromarine Technology, Inc., Tustin, Calif. Primary Examiner-Andrew H. Metz Assistant Examiner-William T. Leader Attorney, Agent, or Firm-K. H. Boswell [57] ABSTRACT [75] Inventor: Walter D. Barba, Modena, Italy [57] ABSTRACT [75] Inventor: Valter May 27, 1983 [57] ABSTRACT [76] Inv. 20, 1982 [1T] Italy 40070 A/82 [51] Int, CL ⁴ GOTO A/82 [51] Int, CL ⁴ C25D 11/18 C25D 11/18 The oxide coating forming a stable chemical bridge between silicon and metal thusly: B1			
 (34) TROCEDS DICALUMINUM OXIDE AND ITS OF ANODIC ALUMINUM OXIDE AND ITS ALLOYS WHICH CONFERS A PARTICULAR RESISTANCE TO AGRESSIVE ALKALINE AGENTS (75) Inventor: Waiter D. Barba, Modena, Italy (73) Assignee: Aeromarine Technology, Inc., Tustin, Calif. (21) Appl. No.: 498,621 (22) Filed: May 27, 1983 (23) Foreign Application Priority Data Jun. 28, 1982 [IT] Italy		D	
 [75] Inventor: Walter D. Barba, Modena, Italy [77] Assignee: Aeromarine Technology, Inc., Tustin, Calif. [21] Appl. No.: 498,621 [22] Filed: May 27, 1983 [30] Foreign Application Priority Data Jun. 28, 1982 [IT] Italy	OF ANODIC ALUMINUM OXIDE AND ITS ALLOYS WHICH CONFERS A PARTICULAR RESISTANCE TO AGRESSIVE ALKALINE	4,310,390 1/1982 Bradley et al 204/37 R Primary Examiner-Andrew H. Metz Assistant Examiner-William T. Leader	
	 [73] Assignce: Aeromarine Technology, Inc., Tustin, Calif. [21] Appl. No.: 498,621 [22] Filed: May 27, 1983 [30] Foreign Application Priority Data Jun. 28, 1982 [IT] Italy	[57] ABSTRACT A process for sealing anodic oxide coating on aluminum and aluminum alloys wherein organic substances with hydrolyzable functional groups like organo-functional silanes react with water at room temperature forming a silantriolic compound [according to the reaction: $R' - Si(OCH_3)_3 + 3H_2O - R' - Si(OH)_3$] which in turn reacts with the oxide coating forming a stable chemical	B1
[52] U.S. Cl	[58] Field of Search 204/35 N, 38 A; 148/627; 427/343, 419.2	25.00:83	25 D 11/24, C 25 D 11/18

EXAMPLE OF SEALING SEQUENCE

NICKEL FREE COLD SEALING

ANODIZING

RINSING

RINSING

COLOURING / ELECTROCOLOURING

RINSING

DEMINERALIZED RINSING

ECOSEAL 6 COLD SEALING 20-25 °C

RINSING

SUPERSEAL PROCESS FOR ALKALINE RESISTANCE

RINSING

Sr

NICKEL-BASED COLD SEALING TECHNOLOGY

Step 1: Nickel-based cold sealing

Temperature = $25 - 32 \degree C$ pH = 6.0 - 6.5Time min/micron = 1
HARDWALL 3 Super = $5 \ g/l$

NICKEL-FREE COLD SEALING TECHNOLOGY

<u>Alternative Step 1 or Step 2: Nickel-free cold</u> sealing

- Temperature
- pH
- Time min/micron
- ECOSEAL 6

- = 20 25 °C
- = 4.0 5.0
- = 1
- = 50 g/l

NICKEL-FREE COLD SEALING TECHNOLOGY

Step 2: Alkaline resistant Superseal

- Temperature
- Time
- Superseal 2S

= 80 - 85 °C
= 20 - 30 min
= 80 - 100 g/l

S r

SUPERSEAL 2S

- Resistance to alkaline agents.
- Improved performance to sealing tests.
- Ecological process.
- Easy to use.
- Easy to analyze.
- Consistent process.

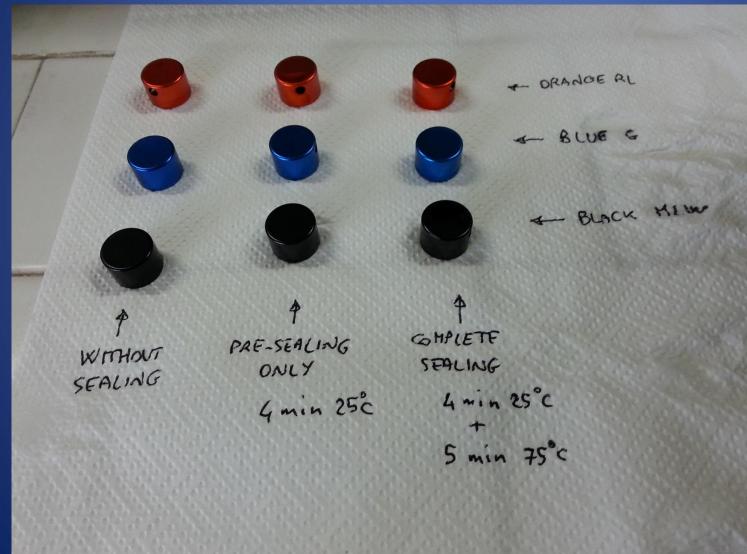
www.imtoo.com

HI = 13,5 HI = 13,5 ALCALINI HT 1

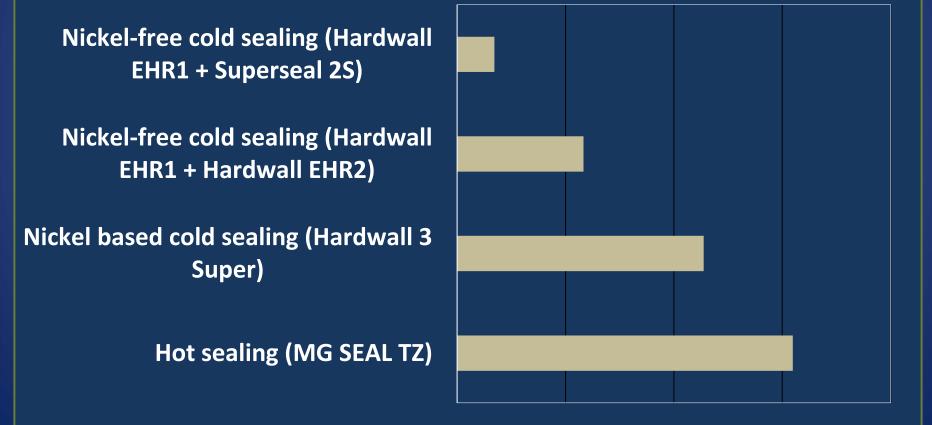
IGH

SUPERSEAL 2S

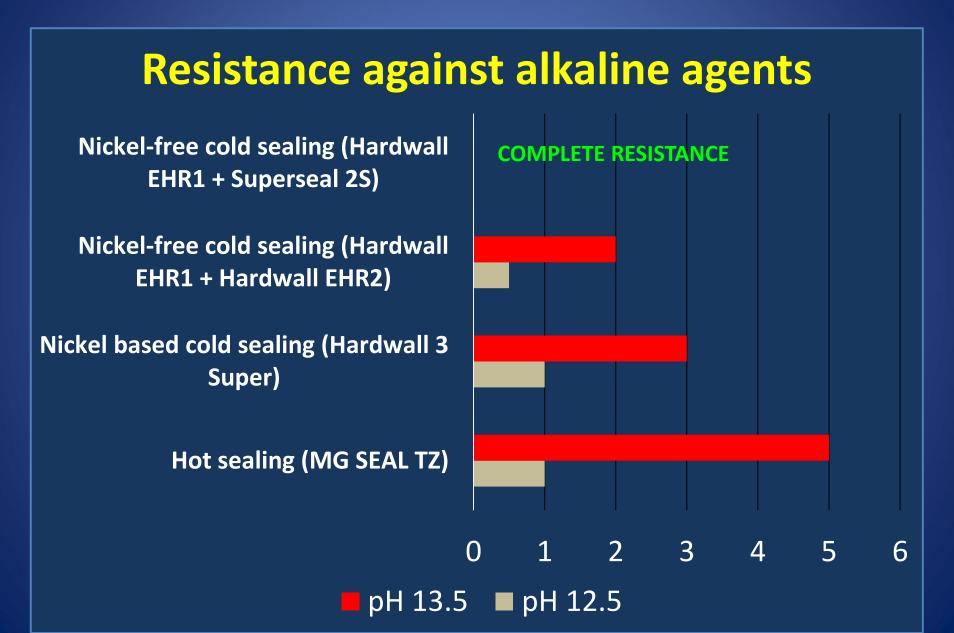
Result of the test of alkaline resistance GMW14665 at pH 13,5. Comparison between a piece sealed with conventional sealing (left) and one sealed with Superseal (right)


SUPERSEAL 2S for AUTOMOTIVE COMPONENTS

Result of the test of alkaline resistance FIAT 9.57448. Piece sealed with Superseal process (no visible attack)



New cold sealing, nickel-free, with Superseal



 \bigcap

İTAI	TF	CN	ī	
IIAI	_ C		U	sr

	LILVIN						
Customer	BMW	VW	AUDI	PSA	FORD	GM	DAIMLER
Standard	GS 90010	TL 212	TL 182	B15 3200 / B28 3370	WSB-M4P9-B2	GMW 14665	DBL 9201
Thickness	5-10 microns	5-10 microns	5-10 microns	8-12 microns	7.5-15.0 microns	7.5-15.0 microns	5-10 microns
Neutral Salt Spray Test	240 h	480 h	480 h		480 h	480 h	
CASS test				24 h		12 h	
Humidity Resistance	480 h					240 h	
SO2 Condensate Alternating Test		5 cycles				5 cycles	5 cycles
High Temperature Resistance	95 degree Celsius alternating	100 degrees Celsius 1 h	160 degrees Celsius 24 h			90 degrees Celsius 24 h	80 degrees Celsius 1 h
Acid/Alkali Resistance	pH=1 + pH=13.5 10 min, at RT	pH=1 + pH=12.5 10 min, at RT	pH=1 + pH13.5 10 min, at RT	pH=13.5 10 min, at RT		pH=12.5/13.0/ 13.5 10 min, at RT	
Acid Dissolving Test					6 max **	6 max **	
Aspect Requirement	Gloss > 500	Matt anodizing		Gloss>530	Gloss>470	Gloss>330	

INDUSTRIAL EXPERIENCE WITH SUPERSEAL IN NORTH AMERICA

INDUSTRIAL EXPERIENCE WITH SUPERSEAL IN NORTH AMERICA

INDUSTRIAL EXPERIENCE WITH SUPERSEAL IN FAR EAST

INDUSTRIAL EXPERIENCE WITH SUPERSEAL

IN FAR EAST

台通复

COLD SEALING HARDWALL 3 SUPER

OT SEALING

UPERSEAL 2S

ALKALINE CORROSION TEST pH 1 + pH 13.5

CONCLUSIONS

NICKEL-FREE PROCESS

Cold sealing
 Nickel-free
 Passes all Qualanod and standard quality tests
 Passes many specific requirements (automotive)
 Approval and patent pending

CONCLUSIONS

- Resistance to alkaline agents according to the main automotive standards.
- Improved performance to sealing tests up to weight loss < 5 mg/dm²!
- Better resistance to salt spray test.
- Ecological process, nickel-free available.
- Easy to use.