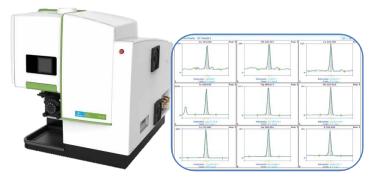

Опыт применения высокопрочных алюминиевых сплавов для перспективных изделий ракетной техники, изготавливаемых с применение аддитивных технологий в АО «Корпорация «МИТ»

Докладчик: Геров Михаил Владимирович

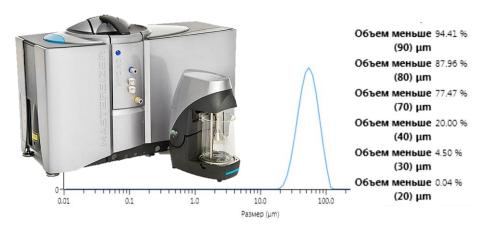
Селективное лазерное сплавление (SLM)



Селективное лазерное сплавление — это технология послойного аддитивного производства объемных металлических изделий из мелкодисперсного порошка по заранее созданной полигональной 3D-модели с использованием сверхмощных лазеров.

- возможность в кратчайшие сроки изготовить заготовки деталей сложной конфигурации высокотехнологичные
- снижение трудоемкости
- создание комплексных, интегрированных «монодеталей» (исключение сварных швов, резьбовых соединений и др.) за один технологический цикл
- снижение веса деталей за счет уменьшения толщины стенок, элементов, создания сотовых и иных структур (бионический дизайн, топологическая оптимизация)
- исключение временных и материальных затрат на подготовку производства
- повышение коэффициента использования материала за счет формирования изделия путем добавления материала

Исходные материалы


Ключевыми характеристиками порошков для аддитивных технологий являются

Химический состав

Сферичность частиц

Гранулометрический состав

Снижение себестоимости и времени процесса изготовления крупногабаритных изделий за счет использования порошка 40-100 мкм (слой 60 мкм).

Селективное лазерное сплавление (SLM)

Оборудование в АО «Корпорация «МИТ»

Промышленный комплекс Concept Laser Xline

полезный габарит рабочей зоны: 800х400х500 мм

- серийное производство деталей по отработанным режимам и технологиям;
- изготовление крупногабаритных деталей.

Лабораторная установка Concept Laser M2 cusing

полезный габарит рабочей зоны: 245х245х280 мм

- выбор оптимальных режимов процесса SLM; разработка технологий изготовления деталей;
- производство деталей средних размеров.

Селективное лазерное сплавление (SLM)

технология сплавления алюминиевого сплава системы Al-Mg-Sc

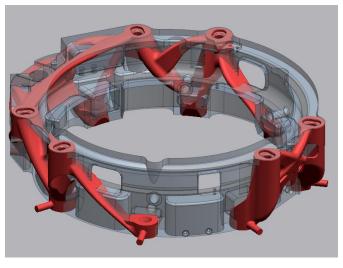
Научно-технический задел:

- ✓ Разработаны технологические режимы сплавления металлического алюминиевого порошка марки PC-553 (AlMgSc0,3) производства ОК «Русал»
- ✓ Выполнена общая квалификация синтезированного материала РС-553 с выпуском технических условий **ТУ 24.42-21-857-56897835-2019 (АО «Композит»)**

Т а б л и ц а 1 – Механические характеристики синтезированных материалов.

	Мех. свойства при температуре 20°С				
Наименование характеристики	Направление синтеза				
	XY (180°)	XZ (90°)			
1	2	3			
PC-553 (AlMgSc0,3) TY 24.42-21-857-56897835-2019					
Предел прочности $\sigma_{_{\rm B}}$, МПа не менее	433	415			
Предел текучести $\sigma_{0,2}$, МПа не менее	421	408			
Относительное удлинение δ, % не менее	8	5			

Емкости


- Повышена конструкционная прочность
- Исключены операции штамповки, сварки.
- Снижено время изготовления

- Подтверждена герметичность изделия.
- Проведены испытания пневматическим и гидравлическим давлением.

Силовые элементы

- Масса снижена в 2 раза.
- Время изготовления снижено
- Исключено приобретение деформированного полуфабриката.

- 3 комплекта: макетный, СтИ и ВИ.
- По результатам ВИ, подтверждена работоспособность при эксплуатационных знакопеременных нагрузках.
- Разрушающая нагрузка на СтИ составила 220% от штатного аналога.

Контроль качества

Применение горячего изостатического прессования (ГИП) позволяет убирать структурные дефекты, «залечивает» остаточную газовую пористость, повышает механические свойства синтезированного материала.

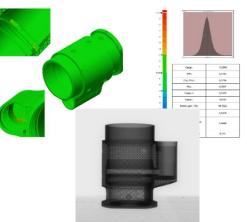


Вид/шифр образец	Угол наклона	σ _в , кгс ∕мм 2	σ_{0,2}, кгс /мм 2	δ,%
PC-553	180°	49,0 ± 0,7	46,3 ± 0,5	17,7 ± 1,8
СЛС+ТО	90°	48,2 ± 1,0	45,6 ± 0,2	11,5 ± 4,2
PC-553	180°	49,4 ± 0,1	46,8 ± 0,1	18,3 ± 1,3
СЛС+ГИП	90°	49,9 ± 0,5	47,0 ± 0,9	16,8 ± 0,8

Механические свойства

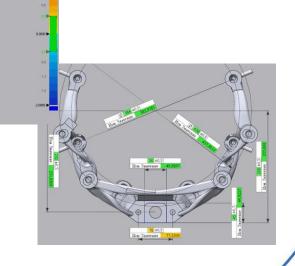
- 1. Материал непосредственно после синтеза имеет микропоры равномерно распределенные по объему
- 2. Газовая пористость материала после ГИП снижается на порядок

1



Металлографические исследования

Контроль качества



Технология РКТ, позволяет исследовать изделия на отсутствия несплошностей и остатков порошка, а также получать 3D-модели изделий для оценки отклонений фактических размеров от номинальной 3D-модели.

Контроль основных геометрических размеров, а также отклонений от номинала наружных сложнопрофильных аэродинамических поверхностей изделий, выполняется при помощи 3D-сканера объемная точность которого 0,02 + 0,035 мм/м

