

THE USE OF ALUMINIUM IN GREEN CONSTRUCTION

Vladimir Limin

Vladimir Limin – professional engineer with California USA license

CEO of the Salimus Consultancy DMCC, Dubai, UAE

(Name: Vladi	mir Limin	
	Experience:	20+ Years	
	Position:	CEO of Salimus Consultancy	
		Former CEO of Russian Green	Ì
		Building Council.	
	Credentials:	BSME, PE, LEED AP, Estidama PQP,	,
		CEM, GSAS CGP, EHS-Trakhees	5
		EGBR.	
	Nationality:	Russian, Canadian	

The use of aluminium in construction contributes to the achievement of sustainable development goals

• Buildings account for up to 40% of global energy consumption, therefore the improvement of the overall systemic efficiency of buildings while maintaining their value as residential and working spaces is a key aspect of sustainable development.

• Aluminium-based materials enable architects to design adaptable, energy-efficient buildings that can be built (and demolished) faster, safer, and with better cost-effectiviness than traditional buildings.

• Aluminium components in a well-maintained interior such as a church or library seem to have an infinite lifespan. However, aluminium structures that are exposed to weather conditions have a life expectancy of over 120 years.

• Aluminum provides the most important sustainability properties of building structures - durability, recyclability, flexibility, lightness / strength, potential for energy savings and a carbon footprint reduction.

Alcoa Building - the world's first aluminium skyscraper

• This 30-floors office tower in downtown Pittsburgh was designed by architects Harrison and Abramovich for the aluminium giant Alcoa and opened in 1953. In December of that year, Popular Mech described it as "the world's first aluminium skyscraper." It is lined with 6ft x 12ft (1829mm x 3658mm) uniform extruded aluminium elements that are pre-glazed.

• In the summer of 2013, when engineer Stephanie Carlisle performed an inspection of the building's condition, he found that the building was still in very good condition, with the original windows preserved.

THE YO		Proje	D v4 for BD+C: New Construction and I ct Checklist	Major Renovatio		•	Name	:		
Ŷ	(? N	Credit	Integrative Process	1						
0	0 0	Locat	ion and Transportation	16	0	0	0 Ma	ateria	als and Resources	13
		Credit	LEED for Neighborhood Development Location	16	Y		Prer	req	Storage and Collection of Recyclables	Required
		Credit	Sensitive Land Protection	1	Y		Prer	req	Construction and Demolition Waste Management Planning	Required
		Credit	High Priority Site	2			Cred	dit	Building Life-Cycle Impact Reduction	5
		Credit	Surrounding Density and Diverse Uses	5			Cred	dit	Building Product Disclosure and Optimization - Environmental Product Declarations	2
		Credit	Access to Quality Transit	5			Cred	dit	Building Product Disclosure and Optimization - Sourcing of Raw Materials	2
		Credit	Bicycle Facilities	1			Cred	dit	Building Product Disclosure and Optimization - Material Ingredients	2
		Credit	Reduced Parking Footprint	1			Cred	dit	Construction and Demolition Waste Management	2
		Credit	Green Vehicles	1						
					0	0	0 Inc	door	Environmental Quality	16
0	0 0	Susta	inable Sites	10	Y		Prer	req	Minimum Indoor Air Quality Performance	Required
Y	(Prereq	Construction Activity Pollution Prevention	Required	Y		Prer	req	Environmental Tobacco Smoke Control	Required
		Credit	Site Assessment	1			Cred	dit	Enhanced Indoor Air Quality Strategies	2
		Credit	Site Development - Protect or Restore Habitat	2			Cred	dit	Low-Emitting Materials	3
		Credit	Open Space	1			Cred	dit	Construction Indoor Air Quality Management Plan	1
		Credit	Rainwater Management	3			Cred	dit	Indoor Air Quality Assessment	2
		Credit	Heat Island Reduction	2			Cred		Thermal Comfort	1
		Credit	Light Pollution Reduction	1			Cred		Interior Lighting	2
							Cred		Daylight	3
0		_	· Efficiency	11			Cred		Quality Views	1
Y		Prereq	Outdoor Water Use Reduction	Required			Cred	dit	Acoustic Performance	1
Y		Prereq	Indoor Water Use Reduction	Required						•
Y		Prereq	Building-Level Water Metering	Required	0	0	0 Ini			6
		Credit	Outdoor Water Use Reduction	2			Cred		Innovation	5
		Credit	Indoor Water Use Reduction	6 2			Cred	dit	LEED Accredited Professional	1
		Credit	Cooling Tower Water Use Water Metering	2	•	0	0.0	!	al Delavitu	4
		Cledit	water wetering	I	U	U	Cred	_	Al Priority Regional Priority: Specific Credit	4
0	0 0	Enorg	y and Atmosphere	33			Cred		Regional Priority: Specific Credit	1
Y		Prereq	Fundamental Commissioning and Verification	Required			Cred		Regional Priority: Specific Credit	1
Y		Prereq	Minimum Energy Performance	Required			Cred		Regional Priority: Specific Credit	1
Y		Prereg	Building-Level Energy Metering	Required			0.00			
Y		Prereq	Fundamental Refrigerant Management	Required	0	0	0 TC	DTAL	.S Possible Poi	ints: 110
		Credit	Enhanced Commissioning	6	<u> </u>	1 • 1			: 40 to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80	
		Credit	Optimize Energy Performance	18						
		Credit	Advanced Energy Metering	1						
		Credit	Demand Response	2						
		Credit	Renewable Energy Production	3						
		Credit	Enhanced Refrigerant Management	1						
		Credit	Green Power and Carbon Offsets	2						
u										

Section: Energy and Atmosphere

- **Credit EA (Optimize Energy Performance): Energy efficiency optimization** framing systems, curtain walls and windows, light shelves, sun shades.
- Credit to EA (Renewable Energy Production): Renewable Energy Production Renewable energy systems such as photovoltaic (PV), panels and mini wind turbines are usually made from aluminium frames and aluminium products.

Section: Indoor environmental quality

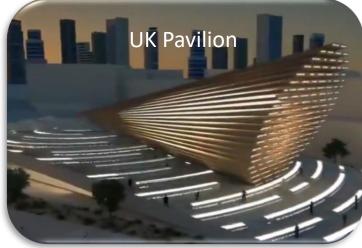
- **Credit EQ: Thermal Comfort** Controllable aluminium windows provide adjustable natural ventilation for increased thermal comfort.
- **Credit EQ : Daylight** Aluminium frames and windows offer reliable and versatile solutions to make optimal use of natural light and direct sunlight.
- **Credit EQ : Quality Views** Nice Scenery Outside The Window aluminium frames and windows offer reliable and versatile solutions that enhance the ability to take a break from work while admiring the view outside.
- **Credit EQ : Acoustic Performance** aluminium framing systems and curtain wall systems, as well as double and triple insulated glass, contribute to improve thermal and acoustic performance.

• Section: Materials and Resources

• **MR Credit:** (Construction and Demolition Waste Management) Construction and Demolition Waste Management - Most aluminium building structures or components are prefabricated. This means that scrap is collected and recycled centrally, which minimizes excess waste on the construction site. Due to the high cost of aluminium scrap and the ease of recycling, almost all of the aluminium used in construction is recycled.



EXPO 2020 Pavilions


Germany Pavilion

Positive Energy & Near-Zero Energy Building Projects

Project:	Saint	Gobain's	Multi	Comfort				
	House							
Service:	Energy	Energy Modeling &						
	Comm	issioning.						

Location: Abu Dhabi, UAE

Energy Savings: 114%

Salimus

Project:	DEWA HQ - Al Sheraa							
Service:	•,	Modeling ion with Ober						
Location:	Dubai, U	ΑE						
Energy Savings: 78%								

Center for Contemporary Art GES-2 in Moscow

A: Unit 111, 1st floor, Concorde Tower, Cluster H, Jumeirah Lakes Towers,

Dubai, UAE. P.O. Box 450224.

T: +971 4 447 1776 / **M:** +971 50 104 1376

W1 (services): <u>www.salimus.com</u> / W2 (products): <u>www.envelopetesting.com</u> E: <u>info@salimus.com</u>

