

Применение гибридных аддитивных технологий в производстве крупногабаритных изделий

Кратное снижение срока получения заготовок

Снижение стоимости – до 50%

Повышение коэффициента использования материала — **в три и более раз**

Снижение сроков изготовления на 30% и более процентов

Снижение складских издержек

Высокое качество получаемого металла

Контроль процесса изготовления

Широкая номенклатура материалов

Область применения:

Печать заготовок для опытных деталей

Изготовление заготовок средней сложности для конечных изделий

Печать заготовок для производства оснастки

Изготовление и ремонт штамповой оснастки

Предприятия авиастроения, авиадвигателестроения, автомобилестроения, ракетостроения, нефтегазового машиностроения и др.

Российский разработчик и производитель ЗД принтеров для печати крупногабаритных заготовок наплавкой проволок

Линейка продуктов – роботизированные принтеры и установки портального типа для трехмерной печати

Уникальные разработки:

- Оборудование и технологии лазерной проволочной наплавки
- Оборудование и технологии плазменной наплавки проволок большого диаметра
- Система управления процессом
- Технологии и оборудование послойного деформационного упрочнения

отечественное оборудование для трехмерной печати

Компактные ЗД принтеры

- ProM Arc
- ProM Plasma
- ProM xLight
 Laser

Портальные ЗД принтеры

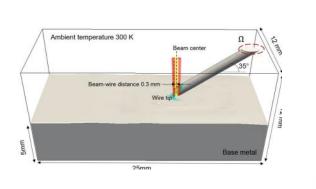
- Portal Arc
- Portal Plasma

Опции проковки и предварительной механообработки

Принтеры на базе манипуляторов

- RoboM Arc
- RoboM Plasma
- RoboM xLight
 Laser

• лазерные системы



Моделирование тепломассопереноса

[Pang, 2019]

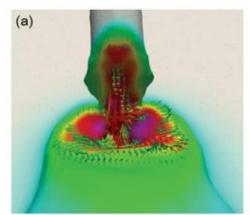
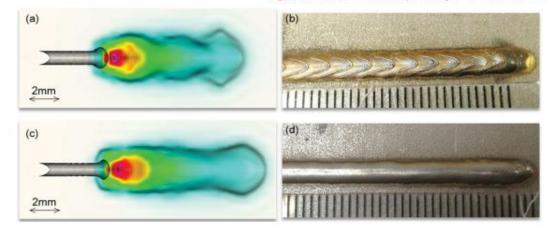
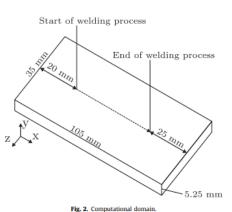




Figure 6. Fluid flow on the liquid bridge at 250 ms in Process

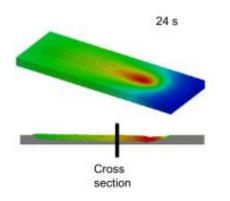


Figure 7. Appearances of the deposits in different processes. (a,b) Process No. 2; (c,d) Process No. 4. 26.11.2025

[Trautmann, 2017]

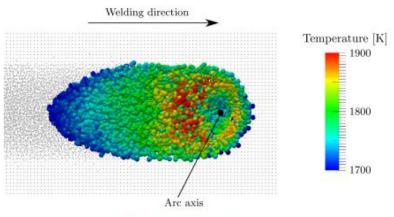


Fig. 13. Temperature on the weld pool surface.

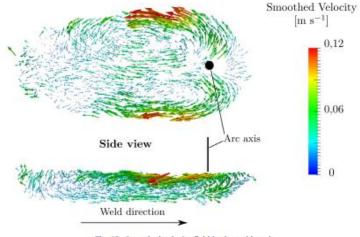
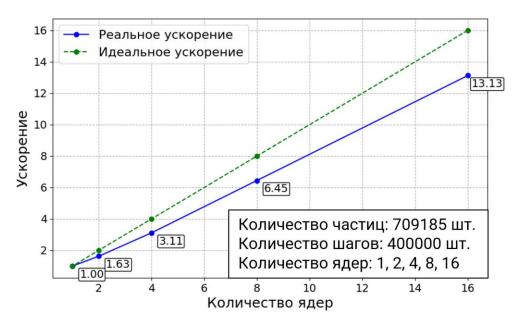
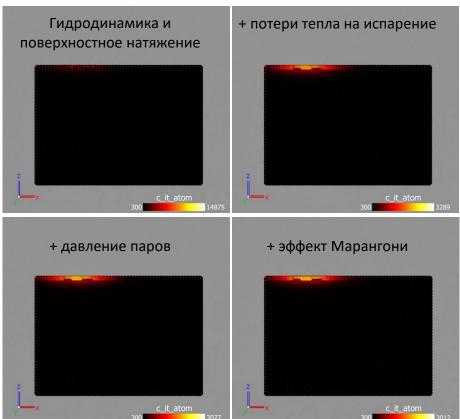
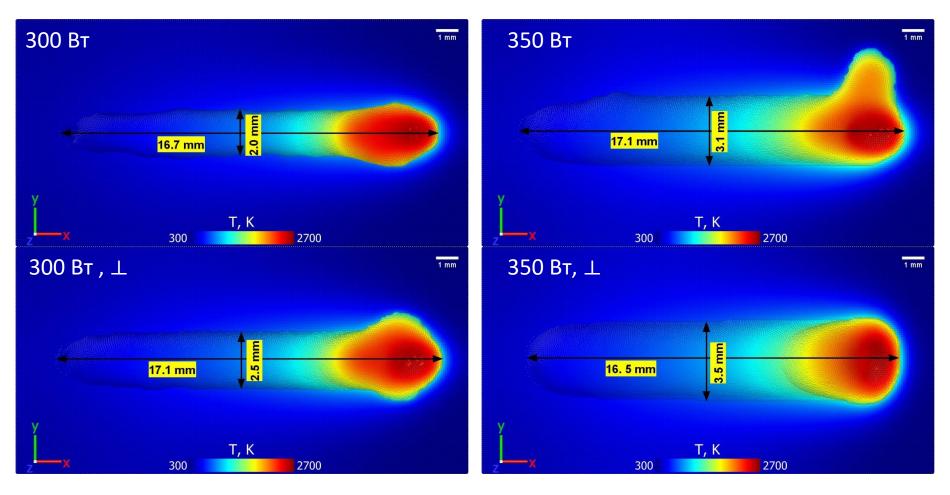




Fig. 12. Smoothed velocity field in the weld pool.

Характеристики ЭВМ		
Процессор	Threadripper 3970X 32-Core Processor 3.70 GHz	
ОЗУ	128 ГБ DDR4	
Видеокарта	NVIDIA RTX A5000	
Видеопамять	24564 МБ GDDR6	
ОС	Ubuntu 20.04.6 LTS	

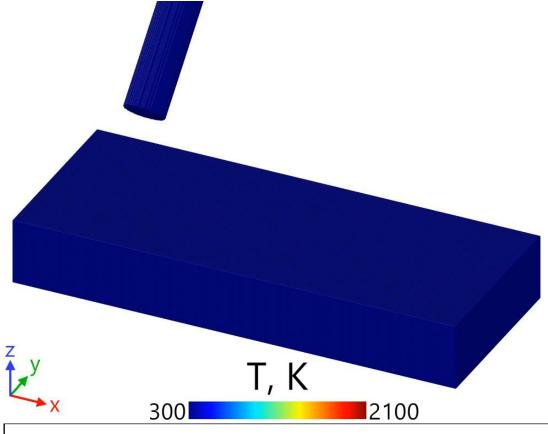


- + Кристаллизация
- + Давление паров
- + Поверхностное натяжение
- + Эффект Марангони
- + Распределение теплового

источника

26.11.2025

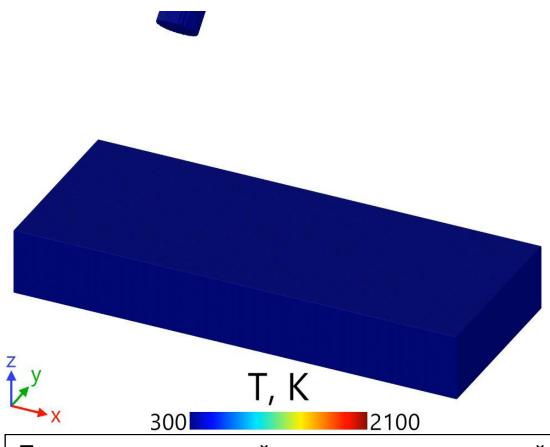
Анализ результатов


Геометрические характеристики валиков после наплавления

Моделирование процесса проволочной

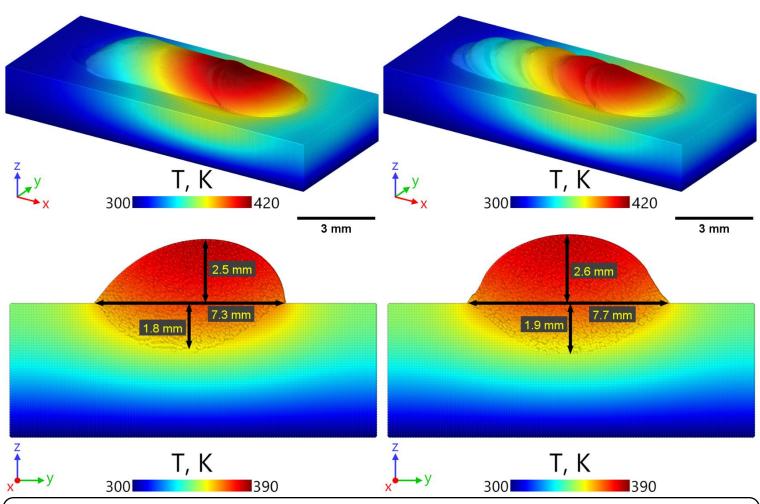
Параметры процесса

на	$\Pi \mathcal{F}$	1a F	ЗКИ
110		IUL	<i>,</i> , , , ,


Диаметр проволоки	d	ММ	3
Длина проволоки	I	ММ	55
Размер подложки	(ш×д×в)	MM MM MM	35×14×5
Скорость подачи (до контакта)	V _{нет.конт.}	M/C	-
Скорость подачи (после контакта)	V _{KOHT} .	M/C	0.04
Время подачи (после контакта)	$t_{\scriptscriptstyle{\mathrm{KOHT.}}}$	С	Всё время
Скорость подачи (обратная)	V _{oб.}	M/C	-
Время подачи (обратная)	t _{об.}	С	-
Время без подачи	t _{без подачи}	С	-
Время работы источника энергии	t _{pa6}	С	1.45
Мощность источника энергии	Q	Вт	1500
Диаметр источника энергии	d_Q	ММ	3
Параметр дискретизации	h	MM	0.1
Количество частиц	n	ШТ	2905305
Количество шагов	N	ШТ	800000
Физическое время	t	С	2.0
Время расчёта	t	ччч:мм:сс	97:19:35

Процесс проволочной наплавки с постоянной подачей присадочного материала

Моделирование процесса проволочной наплавки

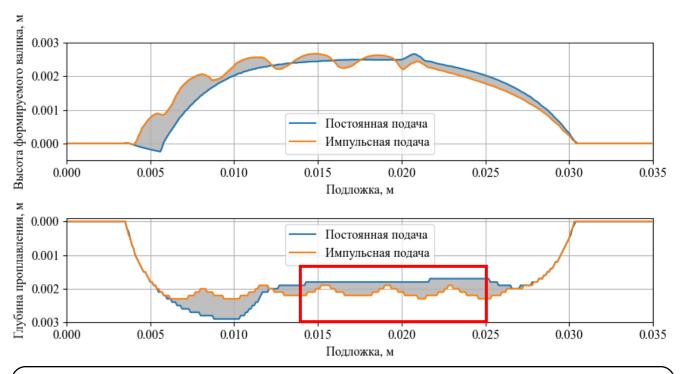

		Параметр	ы процесса
Диаметр проволоки	d	ММ	3
Длина проволоки	1	MM	55
Размер подложки	(ш×д×в)	MM MM MM	35×14×5
Скорость подачи (до контакта)	$V_{\rm Het.Koht.}$	м/с	0.15
Скорость подачи (после контакта)	V _{KOHT} .	м/с	0.10
Время подачи (после контакта)	$t_{\text{конт.}}$	С	0.14
Скорость подачи (обратная)	V _{об.}	м/с	0.08
Время подачи (обратная)	t _{об.}	С	0.08
Время без подачи	t _{без подачи}	С	0.03
Время работы источника энергии	t _{pa6}	С	1.45
Мощность источника энергии	Q	Вт	1500
Диаметр источника энергии	d_{Q}	ММ	3
Параметр дискретизации	h	MM	0.1
Количество частиц	n	ШТ	2905305
Количество шагов	N	ШТ	800000
Физическое время	t	С	2.0
Время расчёта	t	ччч:мм:сс	126:58:14

Процесс проволочной наплавки с импульсной подачей присадочного материала

26.11.2025

Результаты

Наплавленные валики при постоянной (слева) и импульсной (справа) подаче присадочного материала и их поперечные срезы


Постоянная подача:

- •Несимметричность валика
- •Зона несплавления со стороны подачи проволоки

Импульсная подача:

- •Симметричность валика
- •Отсутствие зоны неплавления

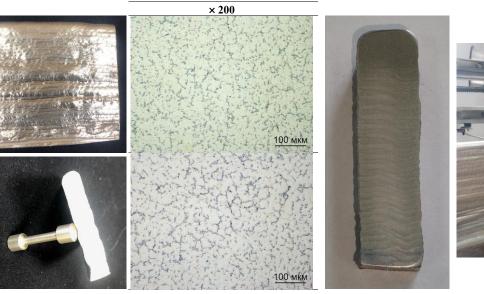
Результаты

Графики высоты формируемых валиков (сверху) и глубины проплавления подложки (снизу) при разных способах подачи проволоки

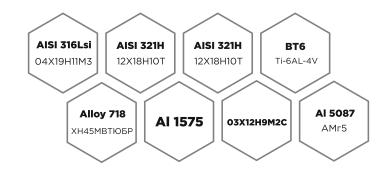
Средняя глубина проплавления при импульсной подаче выше, чем при постоянной

Постоянная подача:

- •Гладкая верхняя часть валика
- •Постоянная глубина проплавления


Импульсная подача:

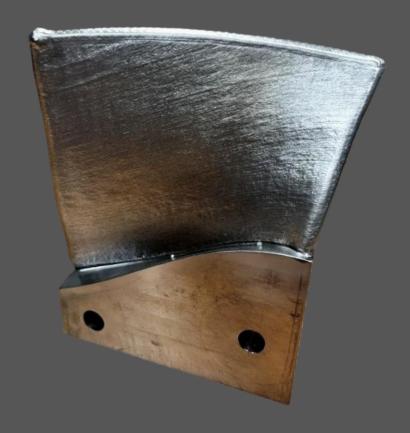
•Волнистый характер верхней части валика и глубины проплавления


Плазменная наплавка проволоками больших диаметров

Магниевый сплав МА5

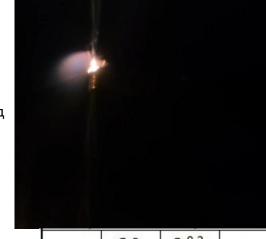
Алюминиевый сплав

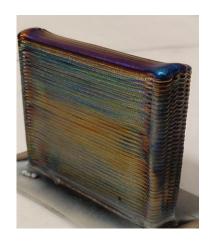
Система адаптивного управления процессом

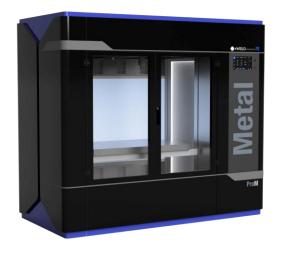

Разработанная в компании **xWeld** система управления процессом выращивания за счет одновременного контроля целого ряда технологических параметров, изменяющихся в зависимости от фактического теплоотвода и расхода материала обеспечивает следующие ключевые, уникальные преимущества:

- Качество поверхности изделий кратно превосходящее другие проволочные технологий, сравнимое с LPBF
- Автоматическое выравнивание высоты слоя
- **П**ечать слоями переменной толщины
- ✓ Минимизация участия человека в процессе 3D печати

Уникальные технологии


Уникальные технологии Система xLight vacuum - лазерная наплавка проволок в вакууме


Награда в номинации «Вклад в развитие отрасли» на выставке Weldex 2024



- сниженное тепловложение и расход материала
- высокое качество наплавленного металла
- низкая стоимость
- надежность и универсальность процесса
- вертикальная подача проволоки
- отсутствие рентгеновского излучения
- неглубокий вакуум
- Свойства материала на уровне поковок!!!

No	σ_в,	σ_0,2,	\$ 0/	.1. 0/
Nº	МПа	МПа	δ, %	ψ,%
N	Латериал	в состояни	и наплавк	И
1-1.1-1	984	884	12,9	29,0
1-1.1-2	971	880	12	15,7
1-1.1-3	953	850	13,3	26,5
Матери	ал после	ТО		
1-1.2-1	912	824	22,0	28,4
1-1.2-2	923	830	17,0	23,9
1-1.2-3	924	838	14,1	18,9

Материал: сплав ВТ6 проволока Ø 1.2 мм

пермский политех

Высота слоя: 0.8 мм

Габариты: **105х50х150 мм**

12 часов

Припуски: 1.5 мм

Масса наплавки: 1.5 кг

Затраты на материалы

Авиастроение

Выращивание лопатки взамен дефектной на моноколесе. Используется наплавка в 5-ти координатах с применением неплоского слайсинга. Слайсер xWeld совместно с OOO «Аддитивные технологии». Слои повторяют форму основы, на которую производят наплавку, что обеспечивает высокое качество сплавления. Экономический эффект до 10 млн. руб. Наплавлено на оборудовании Vac xLight

Материал: титановый сплав ВТ6 проволока Ø 1.2 мм

Высота слоя: 2.4 мм

Габариты: **760x350x910 мм**

Припуски: 3...5 мм

Масса наплавки: 56 кг

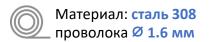
Затраты на материалы

1067 тыс. руб.

Авиастроение

Заготовка обтекателя. Используется наплавка в 5-ти координатах в камере с защитной атмосферой. Срок изготовления изделия вместе с фрезерной механической обработкой 2 месяца. Срок изготовления штамповой оснастки для производства по традиционной технологии -14 месяцев.

Электродуговая (плазменная) проволочная наплавка Система – RoboM с камерой с защитной атмосферой.



Технологические кейсы

Высота слоя: 1.2 мм

Габариты: 2007x2007x221 мм

Припуски: 5 мм

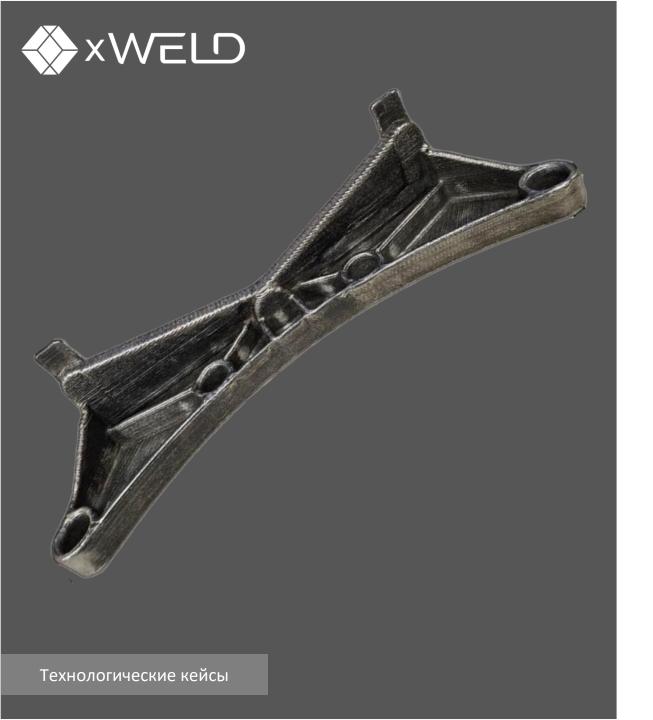
Масса наплавки: 479 кг

Затраты на материалы

Материал	308	622 тыс. руб.	
Газ	Аргон	45 тыс. руб.	739 тыс. руб.
Электричество		70 тыс. руб.	

Авиадвигателестроение

Заготовка входного конфузора для использования в составе испытательного стенда газотурбинного двигателя. Наплавка производилась в 3+2 координатах на оборудовании **RoboM** 6+2



Hybrid

Материал: **сталь 316L** проволока Ø 1.2 мм

пермский политех

Высота слоя: 1.0 мм

Габариты: **450х200х130 мм**

12 часов

Припуски: 0 мм

Масса наплавки: 2.5 кг

Затраты на материалы

Вертолетостроение

Стальной кронштейн. Выращивание заготовки в трех координатах под обработку посадочных поверхностей. Наплавлено на оборудовании **ProM** xLight

Материал: **сталь 316L** проволока Ø **1.2** мм

пермский политех

Высота слоя: 1 мм

Ŝ,

Габариты: **150х150х65 мм**

Припуски: 1 мм

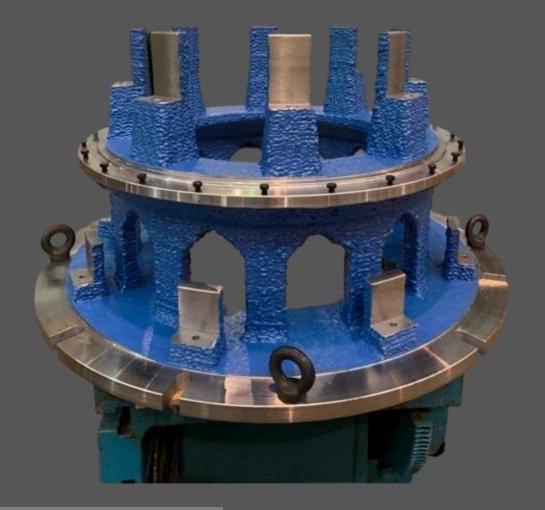
Масса наплавки: 0.8 кг

Затраты на материалы

Материал	316L	1.2 тыс. руб.	
Газ	Аргон	1.2 тыс. руб.	3.4 тыс. руб.
Электричество		1 тыс. руб.	

Нефтегазовое машиностроение

Заготовка крыльчатки. Выполнена выращиванием в трех координатах в виде гибридной конструкции. Подложка является частью изделия. Наплавлено системой **ProM** xLight



Материал: **сталь 30ХГСА** проволока Ø **1.6 мм**

| ↑ Выс

Высота слоя: 2.4 мм

Â

Габариты: 650х650х460 мм

116 часа

_′ г

Припуски: 3..5 мм

kg

Масса наплавки: 460 кг

Затраты на материалы

Материал	Сталь 30ХГСА	303 тыс. руб.		
Газ	Аргон	50 тыс. руб.	398 тыс. руб	5.
Электричес	ТВО	45 тыс. руб.		

Двигателестроение

Станочная оснастка. Наплавка с использованием 3+2 координат. Конструкция оптимизирована со снижением материалоемкости и уменьшением количества используемых при изготовлении деталей.

Материал: Al 5087 проволока Ø 1.2 мм

пермский политех

Высота слоя: 2 мм

Габариты: мм

72 часа

Припуски: 3..5 мм

Масса наплавки: 120 кг

Затраты на материалы

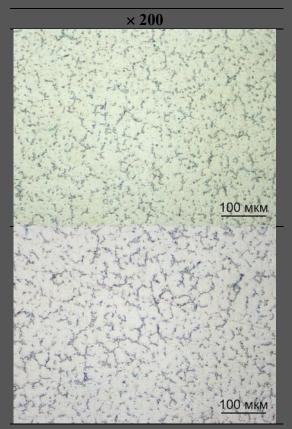
Материал	Al 5087	
Газ	Аргон	
Электричество		

264 тыс. руб.

50 тыс. руб. **245** тыс. руб.

45 тыс. руб.

Двигателестроение



Материалы высокая плотность и механические характеристики на уровне проката

Материал	Рекомендуемая система
08Г2С	Дуга
30ХГСА	Дуга (плазма и лазер в
	проработке)
12X18H10T (321H)	Плазма, дуга, лазер
04X19H11M3 (316LSi)	Плазма, дуга, лазер
03X12H9M2C	дуга (плазма и лазер в
адаптированная	проработке)
термообработка	
АМг5 (5087)	Плазма, дуга
1575	Плазма, дуга
BT6 (Ti-6Al-4V)	Плазма, дуга, лазер
адаптированная	
термообработка	
ХН45МВТЮБР (Alloy	Плазма, дуга, лазер
718)	
Д20	Плазма, дуга
Alloy 625	Плазма, дуга, лазер