INDUSTRIALIZATION OF ANAPHORETIC COATING PROCESS

ON ALUMINIUM ALLOYS

Aluminium-21, 3-5 October, 2017, Moscow

HELICOPTERS

Delphine CORDIER

Presentation plan

- 1. AIRBUS Helicopters presentation
- 2. Application of anaphoretic coating process
- 3. Process description
- 4. Industrial sites
- 5. Anaphoretic coating performances
- 6. Industrialization
- 7. Reparability
- 8. Conclusion

1- AIRBUS Helicopters

World leader manufacturer in the civil market

to serve 3,014 operators

in 152 countries

6.65 bn € turnover in 2016

29 Customer Centres

Conception & Development

Industry & Production

Support & Services

2 – Application of anaphoretic coating process

Protection of Airframe parts in aluminium alloy

AIRBU

E-coat = Electro-coated paint on conductor substrate

Aluminium-21, 3-5 Oct 17, Moscow

4 – Industrial sites

- ➤ AH Marignane: First industrial process implemented ≈ 4000L tank
- > SGI (Aalberts Industries) ≈ 500L tank (AIRBUS partner for feasibility tests)
- > SPI Aero ≈ 3000L tank (AIRBUS partner for qualification / industrialization)

Pilot line at SGI (France)

E-coat product = PPG Aerocron™

SPI Aero (France)

AIRBUS Helicopters Marignane (France)

Alodine + Primer

Anaphoresis

5 – Anaphoretic coating performances

Performances	Test method	Tested materials	RESULT:
Adhesion	ISO2409 - $(T_0, T_0+14$ days of immersion)	2xxx, 5xxx, 6xxx, 7xxx	
Bending test	ISO1519 (Ø=6mm at RT)	2024 T3	\odot
Impact resistance	ISO6272-1	2024 T3	©
Scratch resistance	ISO1518	2024 T3	\odot
Corrosion SST	ISO 9227 – 3000h with and without scarification	2xxx, 5xxx, 6xxx, 7xxx	 Need of an additional paint layer on 2024, 2618 & 7010 machined an the other allows
Filiform corrosion	ISO 4623-1 &2	2024 T3	© on the other alloys
Confined corrosion	ISO 9227 – 3000h with containment area	2024 T3	
Humidity/Heat resistance	70°C - 85% HR - 3000h	2024 T3	\odot
Accelerated aging	-55°C to 90°C and 0% to 70% HR - 3000H	2024 T3	\odot
Sea water resistance	ISO 2812-1	2024 T3	
Fire resistance	FAR 25-853	2024 T3	
U.V. resistance	UVB cycles of 20h during 500h	2024 T3	\odot
ninium-21 3-5 Oct 17 Moscow	CrVI primer Anaphoresis before after before after		AIRBU

6 – Industrialization

Treatment of parts

Capability to treat complex geometry

Example of structural parts treated by anaphoresis

Tooling

- ✓ Fluids evacuation
- ✓ Fixation / Contact points
- Conductivity: Aluminium & Stainless steel tested

Impact of the treated surface

2024 T3 sheet surface	E-coat thickness	
0,04 m²	11,5 μm	
4 m²	11,4 μm	

6 – Industrialization

Stri	Results	
Manual stripping	Scotch brite	C
Mechanical stripping	Polymer media	\odot
Chamical stringing	Socostrip A0212 / A0103N (gel)	٢
Chemical stripping	Comorcap T4551 (liquid)	٢

Aluminium-21, 3-5 Oct 17, Moscow

7 – Reparability

Local Touch-up process	Results	
Reprocessing by immersion (anaphoresis bath)	O Thickness OK after mechanical stripping + reprocessing	
Local touch-up: CCC + primer	② Qualified with Alodine 1132 sticker + CrVI primer Qualification in progess with CrIII CCC + CrVI free primer	
Local touch-up: Anaphoresis by a DALIC process	Development in progress	

Anaphoresis local touch-up cell

Applications on 2024 T3

Local IR curing

0,16 dm²

Aluminium-21, 3-5 Oct 17, Moscow

8 – Conclusion

- REACh compliant process in 1 treatment step (oxydation + paint)
- Interesting performances to consider it as an effective replacement of current aluminium protections
- Industrial applications: possibility to treat different alloys with complex shape
- Several possibilities to repair the e-coat

Thank you for your attention

Delphine CORDIER AIRBUS Helicopters (Marignane)

Materials & Processes Engineer Tel. : +33(4) 42 85 75 50 E-mail: <u>delphine.cordier@airbus.com</u>

