Институт легких материалов и технологий РУСАЛ

Услуги Испытательного центра

Институт Легких Материалов и Технологий (ИЛМиТ)

ИЛМиТ был создан в 2017 году в рамках сотрудничества РУСАЛ и МИСиС при поддержке Минобрнауки России и Минпромторга России. Испытательный центр ИЛМиТ располагает уникальным дорогостоящим исследовательским оборудованием OT ведущих мировых производителей, квалифицированным персоналом, специализируется на услуг ПО проведению научных исследований оказании интересах РУСАЛ и разработок в экспериментальных внешних пользователей.

Основные цели и задачи Испытательного Центра

- 1. Проведение исследований различного металлических материалов, направленных на разработку новых материалов и технологий их производства в рамках проектов ИЛМиТ, за счет оснащения современным исследовательским, испытательным и технологическим оборудованием;
- 2. Проведение комплексных исследований и испытаний материалов в соответствии с отечественными и международными стандартами, включающих металлографический и химический анализ, испытания на механические, физические и коррозионные свойства;
- 3. Разработка методик проведения испытаний в соответствии с международными и российскими стандартами;
- 4. Проведение фундаментальных научно-исследовательских работ, направленных на разработку новых алюминиевых сплавов.

Аккредитация Испытательного Центра

Испытательный центр ИЛМиТ аккредитован в системе ААЦ «Аналитика» на соответствие требованиям международного стандарта ISO/IEC 17025:2017. Данная аккредитация официально признана Международной организацией по аккредитации лабораторий ILAC

Структура Испытательного Центра

Лаборатория металлографических исследований

Направления работы:

- проведение комплексных металлографических исследований;
- количественное исследование макро- и микроструктуры;

Лаборатория коррозионных испытаний

Направления работы:

- оценка коррозионной стойкости материалов по стандартным методикам;
- климатические и коррозионные испытания материалов

Лаборатория механических испытаний

Направления работы:

- определение механических свойств материалов при статических испытаниях;
- проведение динамических испытаний металлических материалов;

Лаборатория физико-химических исследований

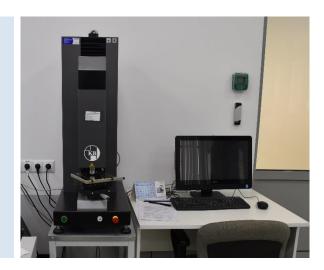
Направления работы:

- определение химического состава алюминиевых сплавов;
- определение теплофизических свойств материалов;

Лаборатория механических испытаний

Статические испытания

Универсальная испытательная машина **MTS** Criterion с термокамерой. Позволяет проводить испытания при температурах от -50 до +500 градусов.


- Испытания на растяжение, сжатие, изгиб
- Используемые стандарты: ГОСТ 1497-84, ГОСТ 9651-84, ГОСТ 11150-84, ГОСТ 25.503-97, ГОСТ 14019-2003
- Номинальное усилие: 100 кН
- Максимальная скорость перемещения траверсы: 750 мм/мин
- Минимальная скорость перемещения траверсы: 0,005 мм/мин
- Предел допускаемой погрешности измерения перемещений: ± 50 мкм в диапазоне до 5 мм, $\pm 1\%$ в диапазоне более 5 мм
- Предел допускаемой относительной погрешности измерения силы: $\pm 0,5\%$ в диапазоне от 1% до 100%
- Диапазон температур испытаний: 130°С...+500°С.
- Точность поддержания температуры: ± 2 °C.

Испытания на твердость

Для измерения твердости используются универсальный твердомер **KB 250 MHSR** и микротвердомер **KBW 1-V Video** компании KB Pruftechnik

- Измерения твердости по методам Бринелля, Виккерса, Роквелла, Супер-Роквелла
- Используемые стандарты: ГОСТ 2999-75, ГОСТ 9012-59, ГОСТ 9013-59
- Измерение микротвердости по методу Виккерса (ГОСТ 9450-76)
- Программное обеспечение для автоматического расчета твердости

Испытания на длительную прочность и ползучесть

Двухзонные автоматические испытательные машины с использованием грузов компании ATS:

Используемые стандарты: ГОСТ 10145-81, ГОСТ 3248-81

Градиент температур ± 0.1 °С в рабочем диапазоне температур до 1100°С;

Точность определения нагрузки 0,5%

Точность определения деформации 0,2 мкм при деформациях до 12 мм;

Высокая соосность нагружения (изгиб менее 4%); Получение диаграмм ползучести в режиме реального времени;

Специальное крепление термопары на образце; Длительность испытаний - более 100 000 часов

Усталостные испытания

Для проведения испытаний на циклическую усталость, а также для определения характеристик трещиностойкости (вязкости разрушения) используются сервогидравлические испытательные системы MTS Landmark и резонансный пульсатор Sincotec Power Swing

Используемые стандарты: ГОСТ 25.507-85, ГОСТ 25.502-79, ГОСТ 25.506-85

Испытания на малоцикловую усталость: частотный диапазон 3...60 Гц максимальное усилие 250 кН высота испытательного пространства 140 - 1283 мм

Испытания на высокоцикловую усталость: частотный диапазон 30...300 Гц максимальное усилие 100 кН высота испытательного пространства 700 мм

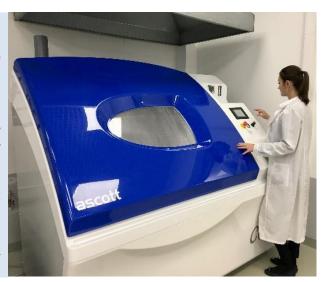
Лаборатория коррозионных испытаний

Циклические коррозионные испытания и испытания в условиях соляного тумана

Камера циклической коррозии в условиях соляного тумана **Ascott CC1000iP** предназначена для ускоренных коррозионных испытаний в режимах, приближенных к реальным условиям воздействия агрессивных сред

Возможность работы в 4 различных режимах:

- •режим испытания на влагостойкость
- •режим испытания на воздействие соляного тумана (нейтрального и кислотного)
- •режим воздушной сушки
- •режим поддержания заданной влажности.


Поддержка стандартов: DIN EN ISO 6270-2 CH, DIN EN ISO 6270-2 AHT, DIN EN ISO 9227 NSS, ГОСТ 9.308. ГОСТ 9.905

Объем камеры 1000 л

Температура регулируемая, от температуры окружающей среды до +50°C

Влажность регулируемая, до 100%

Скорость выпадения солевого тумана регулируемая, 0,5-3,0 мл на 80 см² в час

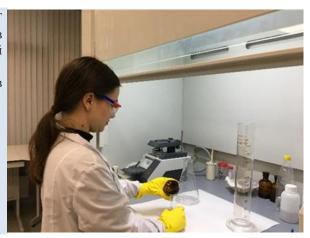
Климатические испытания

Климатическая камера **Термокон ТХВ-1000** предназначена для моделирования реальных условий эксплуатации материалов и изделий от условий Крайнего Севера до тропического климата

Диапазон поддержания температуры: в режиме "температура" -60...+100 в режиме "влажность" +20...+60°С

Диапазон поддержания относительной влажности 30...98 %

Точность поддержания температуры ±1°C Точность поддержания влажности ±3 % Объем рабочей камеры 500 л



Ускоренные коррозионные испытания

Ускоренные коррозионные испытания проводятся при погружении материалов в агрессивные среды. Проводится оценка на общую коррозию, межкристаллитную и расслаивающую коррозию

Испытания по стандартам: ГОСТ 9.913, ГОСТ 9.021, ГОСТ 9.038, ГОСТ 9.904, а также в соответствии с нормативной документацией заказчика.

Возможность определения скорости коррозии в специфичных средах по требованию Заказчика.

Лаборатория физико-химических исследований

Термоаналитические исследования

Термоаналитический комплекс производства компании **Netzsch** позволяет проводить измерение основных физико-химических характеристик материалов в широком интервале температур. Все приборы объединены в единую сеть, позволяющую учитывать характеристики, измеренные на одном приборе, для проведения испытаний на другом.

Дилатометр DIL 402 Expedis Select

Измерение коэффициента термического расширения материалов в диапазоне до 1200 градусов

Калориметр DSC Pegasus 404 F3

Дифференциальный термический анализ/дифференциальная сканирующая калориметрия в диапазоне до 1200 градусов Анализ фазовых превращений Определение теплоемкости Определение физико-химических характеристик – энтальпии, теплоты плавления и т.п.

Прибор с лазерной вспышкой LFA 467 Hyper Flash

Определение температуропроводности материалов в диапазоне до 1250 градусов Анализ теплопроводности

Анализ химического состава материалов

Компактный настольный атомно-эмиссионный спектрометр с индуктивно-связанной плазмой (АЭС-ИСП) **Perkin Elmer Avio 200**, с двойным обзором и вертикальным расположением горелки, разработан для анализа любых проб со сложными матрицами без дополнительного разбавления, обеспечивая новый уровень производительности и гибкости для ICP-приложений.

Диапазон длин волн 165-900 нм Твердотельный ССD детектор Спектральное разрешение:

- 0,008 нм на длине волны As 193,696 нм;
- 0,011 нм на длине волны Ni 231,604 нм;
- 0,020 нм на длине волны Ва 455,403 нм.

Количество измеряемых элементов – 36: Ag, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Ge. Hg, In, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Si, Sn, Sr, Ti, V, Y, Zn, Zr

Общий диапазон измерений элементов – от 0,0001 до 20%

В комплект входит система микроволнового разложения проб Berghof Speedware Entry

Оптико-эмиссионный искровой спектрометр **Bruker Q8 Magellan** позволяет проводить оперативный количественный анализ химического состава алюминия и алюминиевых сплавов в широком диапазоне концентраций, от долей ppm до десятков %.

Количество измеряемых элементов – 23: As, B, Be, Ca, Ce, Co, Cr, Cu, Fe, Ga, Mg, Mn, Na, Ni, Pb, Sc, Si, Sn, Sr, Ti, V, Zn, Zr

Фокальное расстояние 750 мм Высококачественная голографическая дифракционная решетка - 2400 штрихов на 1 мм Диапазон длин волн от 110 до 640 нм Адаптеры для анализа малых образцов, прутков и проволоки, тонких пластин

Анализатор высокого класса **Bruker G8 GALILEO** предназначен для автоматического и точного определения содержания кислорода, азота и водорода в твердых и порошковых материалах. Для определения содержания кислорода, азота и водорода твердый образец расплавляется в графитовом тигле в потоке инертного газа.

Анализируемый диапазон концентраций общего водорода 0,1-1500 ppm.

Анализируемый диапазон концентраций азота 1,0 – 3000 ppm.

Анализируемый диапазон концентраций кислорода 1,0 – 5000 ppm.

Внешний блок для анализа диффузионного водорода Импульсная печь для нагрева образцов с максимальной температурой нагрева до 2800 °C

Лаборатория металлографических исследований

Пробоподготовка

Пробоподготовка ведется на современном оборудовании производства компании **Struers** с высокой степенью автоматизации, что позволяет повысить качество предоставляемых образцов вместе с тем сократив временные затраты на их изготовление. Включает в себя комплекс операций для приготовления шлифов исследуемого металла для последующего анализа.

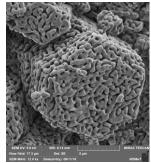
- разрезка металла
- запрессовка металла в компаунд
- шлифовка и полировка образцов, очистка ультразвуком
- электролитическое и химическое травление металла

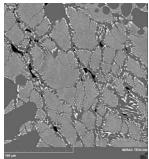
Оборудование позволяет проводить резку, шлифовку, полировку и травление материалов различной твердости, а также образцов самой сложной геометрической формы и размеров.

Исследование микроструктуры методом оптической микроскопии

Исследование структуры и изломов металлов производится на металлографических комплексах, базирующихся на оптических микроскопах Carl Zeiss Axio Observer 7 и AxioVert A1, а также стереомикроскопе Stemi 508 с программным обеспечением.

- определение балла зерна,
- загрязненность неметаллическими включениями,
- определение содержания фаз, параметров их распределения, формы и размеров;
- анализ пористости и трещин;
- исследование дендритного строения в литом металле




Исследование микроструктуры методом сканирующей электронной микроскопии

Для исследования микроструктуры и фрактографических исследований используется сканирующий электронный микроскоп **Tescan Mira 3**, оснащенный приставкой для микрорентгеноспектрального анализа химического состава. Оснащение микроскопа специальным программным обеспечением и детекторами (детекторы SE и BSE) позволяет выполнять сложные аналитические задачи

- определение фазового состава;
- выявление дефектов и микроповреждаемости металла;
- определение причин его разрушения;
- определение элементного состава;
- фрактографический анализ;
- определение элементного состава металла.
- EBSD исследование текстуры или преимущественных кристаллических ориентаций моно- или поликристаллических материалов
- - изучение границ зерен

Участок литья и термообработки

Плавка и литье

Плавильная печь электросопротивления производства **Nabertherm** позволяет работать с большинством цветных металлов и сплавов

- Объем тигля 2 л
- ullet Рабочая температура до 1400 $^{
 m 0}$ С
- Мощность 10,5 кВт
- Графитовый тигель А10
- Регулятор Eurotherm 3508

Индукционная плавильная печь СЭЛТ-ИПУ-15A/20 НС производства **ИнтерСЭЛТ** (Санкт-Петербург) для плавки алюминия и алюминиевых сплавов

- Масса плавки (алюминий) 15 кг
- Тигель для плавки АХ-50
- Мощность 21 кВт
- Частота контурного тока индуктора 10-50 к Гц

Термическая обработка

Участок оснащен комплексом термических печей и сушильных шкафов производства **Nabertherm** для проведения термообработки в воздушной атмосфере с высокой точностью поддержания температуры

- Объем рабочей камеры от 15 до 250 л
- Рабочая температура до 1400 °C
- Точность поддержания температуры $2~^{0}\text{C}$
- Программное обеспечение VCD для непрерывного контроля всех параметров термообработки

Участок механической обработки

Участок механической обработки оснащен современным металлообрабатывающим оборудованием с ЧПУ, позволяющим изготавливать все виды образцов для механических, металлографических и коррозионных испытаний

Токарный станок **Takisawa LA-250**Максимальный диаметр заготовки – 580 мм
Максимальная длина заготовки – 765 мм
Диаметр обработки над станиной – 450 мм
Точность позиционирования – 0,005 мм

Фрезерный обрабатывающий центр **Awea AF-650**

Перемещения по осям (X-Y-Z) – 610-450-450 мм Рабочая подача на все оси – 1-10 м/мин Точность позиционирования – 0,005 мм

Прайс-лист на проведение стандартных испытаний (действителен на 2020 год)

Наименование испытания	Ед. изм.	Стоимость, руб. (без НДС)
Микроскопический анализ структуры (оптика)	шт.	3 500
Количественный металлографический анализ	шт.	6 000
Метод дифракции обратноотраженных	шт.	13 600
электронов (EBSD-анализ).		
Качественный и количественный рентгеноспектральный микроанализ	шт.	11 000
Анализ микроструктуры (СЭМ)	шт.	8 500
Фрактографический анализ изломов (СЭМ)	шт.	7 000
Макроскопический анализ структуры	шт.	3 400
Фрактографический анализ изломов (оптика)	шт.	3 500
Подготовка образцов для количественного	шт.	6 500
металлографического анализа	шт.	0 300
Подготовка образцов для анализа структуры на сканирующем электронном микроскопе	шт.	7 500
Подготовка образцов для фрактографических исследований	шт.	3 200
Общая коррозия (до 30 суток)	партия	34 000
Омолика имороморатости порорумости	до 10 шт.	4 400
Оценка шероховатости поверхности	шт.	
Проведение испытаний на МКК (с анализом шлифа)	партия до 5 шт.	24 500
Проведение испытаний на РСК	партия до 5 шт.	18 200
Определение химического состава сплава методом ИСП	элемент	13 000
Определение химического состава сплава методом ОЭС	шт.	13 200
Определение кислорода, водорода, азота	элемент	19 700
Определение КТР от 20 до 1600 градусов	шт.	21 200
ДСК анализ от +20 до +800 градусов	шт.	18 700
Определение содержания влаги	шт.	4 300
Определение теплопроводности от +20 до 500 градусов	шт.	28 500
Анализ гранулометрического состава	шт.	13 700
Измерение плотности при 20 градусах	шт.	3 800
Изготовление образца на растяжение	шт.	3 700
Изготовление образца на сжатие	шт.	2 500

Наименование испытания	Ед. изм.	Стоимость, руб. (без НДС)
Изготовление образца на изгиб	шт.	2 500
Изготовление образца на МЦУ/МнЦУ	шт.	6 500
Изготовление образца для коррозионных испытаний	шт.	2 400
Прочие работы по изготовлению образцов	шт.	3 700
Плавка в печи электросопротивления (до 3 кг)	шт.	24 500
Плавка в индукционной печи (до 15 кг)	шт.	24 000
Проведение термической обработки (до 8 ч)	садка	8 700
Испытания на растяжение (без модуля Юнга)	шт.	2 500
Испытания на растяжение (с модулем Юнга)	шт.	4 000
Испытания на растяжение при повышенной температуре (до 600 градусов)	шт.	4 700
Испытания на растяжение при пониженной температуре (до -130 градусов)	шт.	5 200
Испытания на сжатие	шт.	2 300
Испытания на изгиб	шт.	2 300
Определение малоцикловой усталости (8 ч)	шт.	17 000
Испытания на многоцикловую усталость	шт.	12 000
Испытания на твердость	шт.	2 700
Испытания на микротвердость	шт.	4 200

Генеральный директор ИЛМиТ

Вахромов Роман Олегович

тел.: +7-495-720-51-70, доб. 12-03

E-mail: Roman.Vakhromov@rusal.com

Директор Испытательного центра

Брянцев Павел Юрьевич

тел.: +7-495-720-51-70, доб. 12-02

E-mail: Pavel.Bryantsev@rusal.com

Контакты и реквизиты:

000 «Институт Легких Материалов и Технологий» 119049, Москва, Ленинский проспект, д. 6, стр. 21, оф. 103

ИНН/КПП 7706446985/770601001

P/c 40702810131000010506

Красноярское отделение № 8646 ПАО Сбербанк

K/c 30101810800000000627

БИК 040407627

ОКПО 06865959

e-mail: ilmit@rusal.com

тел.: +7-495-720-51-70, доб. 12-12 (секретарь)