

РАСЦВЕТ АЛЮМИНИЯ

М. 3. Локшин, Президент

М. В. Яценко, директор по развитию бизнеса НП «АПРАЛ»

Голый алюминий

Финишная отделка алюминия

Порошковое окрашивание

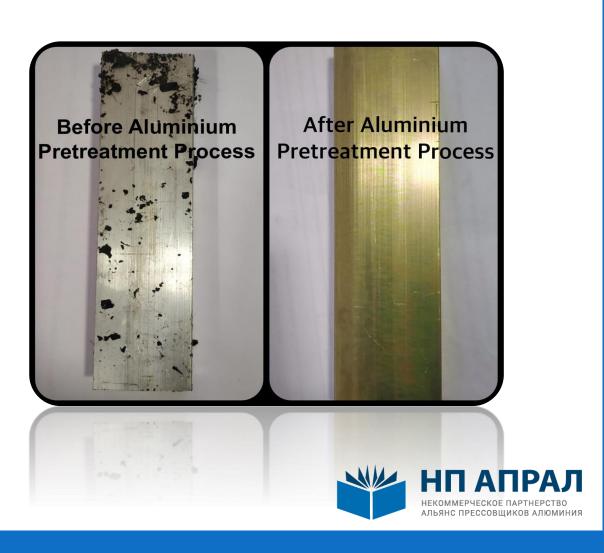
Анодирование

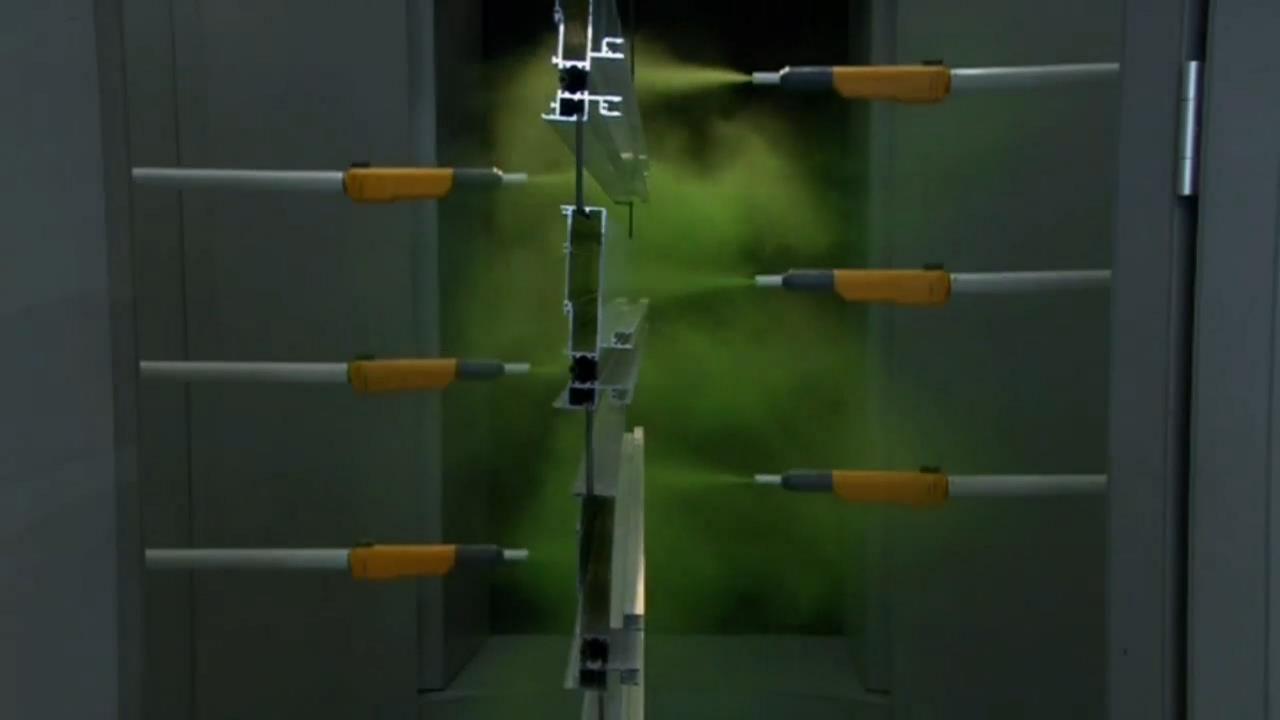
Декорирование


Порошковое окрашивание

Порошковые покрытия отличает очень высокое качество. Хорошая устойчивость к механическим воздействиям и агрессивным средам, долговечность, термостойкость, эстетические качества.

А процесс порошкового окрашивания не наносит вред окружающей среде!





Предварительная подготовка

Анодирование

Декорирование

Декорирование. Сублимация

Процесс сублимации – физико-химический процесс, который представляет собой прямой переход вещества из твердой фазы в газовую фазу.

Благодаря ему на поверхность алюминия можно передавать бесчисленные эффекты и узоры, такие как дерево, мрамор, гранит, различные изображения.

Декорирование. Порошок на порошке

Технология «порошок на порошке» заключается в перенесении эффекта на объект путем наложения двух слоёв порошкового покрытия (грунта и верхнего слоя). Алюминиевые объекты покрываются слоем порошка, который воспроизводит, например, прожилки древесины с помощью специального автоматического аппликатора.

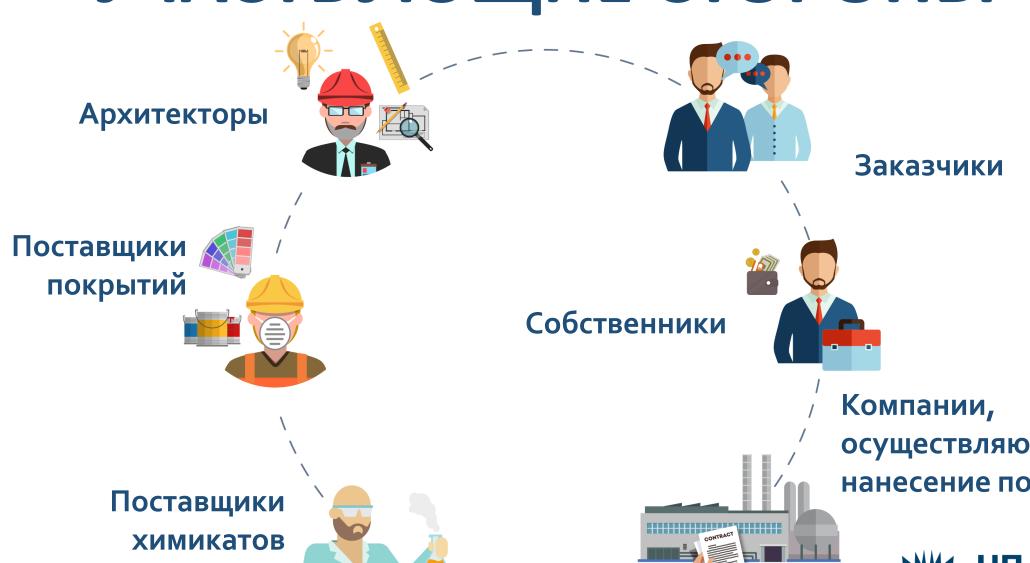
НП АПРАЛ – профессиональная ассоциация, которая служит интересам производителей и потребителей алюминиевых полуфабрикатов, компаний, занятых в секторе финишной отделки алюминия

НП АПРАЛ является Генеральным Лицензиатом QUALICOAT в России, Беларуси, Казахстане и Узбекистане; и QUALANOD, QUALISTEELCOAT в России

SEASIDE

Классы порошковых покрытий по Qualicoat

Класс 1 Qualicoat	Класс 2 Qualicoat	Класс з Qualicoat	
Тест Флорида (потеря цвета и глянца): 1 год	Тест Флорида (потеря цвета и глянца): 3 года	Тест Флорида (потеря цвета и глянца): 10 лет	
Прогнозируемый срок службы покрытия в умеренном климате: 3 года	Прогнозируемый срок службы покрытия в умеренном климате: 10 лет	Прогнозируемый срок службы покрытия в умеренном климате: 25 лет	



УЧАСТВУЮЩИЕ СТОРОНЫ

осуществляющие нанесение покрытий

Сегодня – в Европе

Более **350** сертифицированных компаний

на 1января 2018

Албания

Австрия

Беларусь

Бельгия

Босния и Герцеговина

Болгария

Хорватия

Кипр

Чехия

Франция

Германия

Греция

Венгрия

Ирландия

Италия

Латвия

Литва

Нидерланды

Польша

Португалия

Румыния

Россия

Сербия

Словакия

Испания

Швеция

Швейцария

Турция

Великобритания

Украина

Сегодня – за пределами Европы

Более **100** сертифицированных компаний

на 1января 2018

Бразилия

Китай

Н Колумбия

Доминиканская республика

Египет

МНДИЯ

Израиль

Япония

Кувейт

Д Ливан

Маврикий

Мексика

Марокко

Р Оман

Перу

3 Катар

Саудовская Аравия

Южная Африка

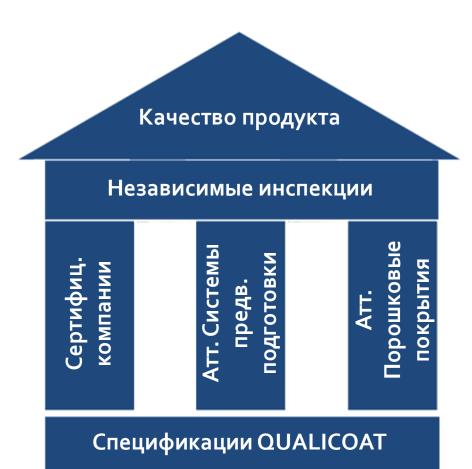
Тунис

Объединенные Арабские Эмираты

США

🔀 Вьетнам 🤊

Растущий спрос на QUALICOAT, QUALANOD



- Производители систем
- Глобальные компании производители металлических конструкций
- Консультанты
- Строительные компании

QUALICOAT

QUALICOAT - это добровольная сертификация качества продукции.

Фундаментом здания QUALICOAT являются Спецификации знака качества для жидких и порошковых органических покрытий на алюминии архитектурного применения.

Колоннами данного здания являются сертификаты и аттестаты, предоставленные QUALICOAT и Генеральными лицензиатами, то есть территориальными и международными ассоциациями, которым была предоставлена Мастер-лицензия на выдачу сертификатов и контроль за работой сертифицированных заводов.

Инспекции проводятся признанными инспекторами, а испытания проводятся лабораториями, аккредитованными в соответствии с ISO 17025. Эти лаборатории и инспекторы объединены в ассоциацию QUALISURFAL

Компании

Коррозия. Свойства алюминия

Оксидный слой образуется из аморфного Al₂O₃

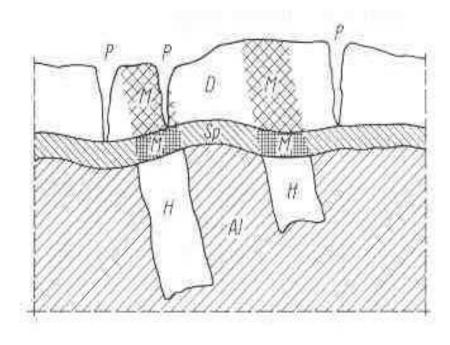


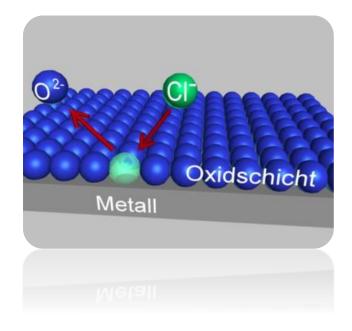
Рисунок: состав чистого алюминия во влажной атмосфере и сформированный оксидный слой

AI = базовый металл алюминий

Sp = базовый слой

Р = поры

Н = Неоднородность в базовом сплаве


М = смешанный оксид

Коррозия алюминия

Следующие характеристики

- •Коррозионная стойкость увеличивается за счет меньшего количества примесей в сплаве
- •Термическая и механическая обработка снижает коррозионную стойкость
- •Примеси Zn и Cu ухудшают коррозионную стойкость и понижают категорию прочности
- •Под воздействием воздуха и влаги алюминий образует естественный оксидный слой (0,1-1µm)

Системы защиты от коррозии

Какой будет концепция защиты металлов?

- ♦ Избегать Н₂О на поверхности
- ❖ Избегать ионов и кислорода на поверхности (Cl⁻)
- Диффузионный барьер и хорошая адгезия системы покрытия - это главное

Системы защиты от коррозии

- Разные возможности для предотвращения появления коррозии
- Металлические слои с разным коррозионным поведением (Ni/Cr on AI)
- Cr образует стабильные и плотные оксидные слои

Огнестойкость

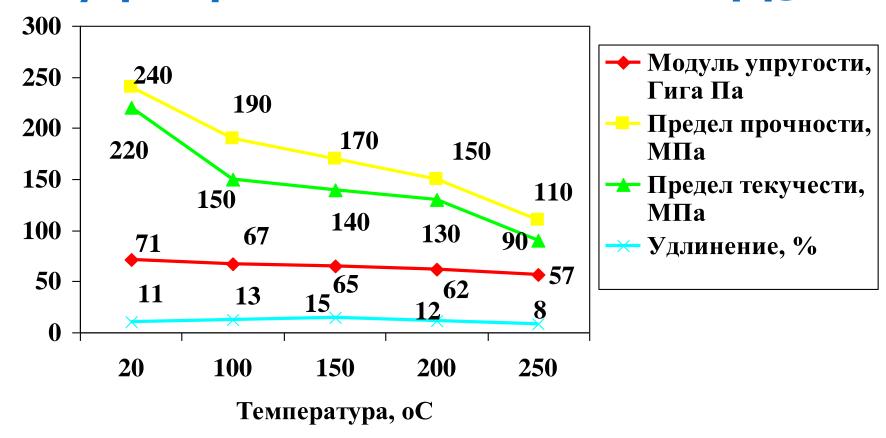
Из-за широкого использования алюминиевых сплавов в строительстве, транспорте, в бытовой технике и в морских конструкциях, необходимо решить проблему алюминия и огня и ответить на вопрос -

«Горит ли алюминий?»

Ответ, конечно же, «**Het**».

Каждый год сотни тысяч тонн алюминиевого лома подают в печи для повторного плавления. Алюминий плавится, когда температура превышает температуру его плавления, он не горит. Если бы это было так, переработка алюминия была бы невозможна.

Огнестойкость



Температура плавления некоторых алюминиевых сплавов

Сплав	Область плавления, °С		
	Начало	Конец	
	(солидус)	(ликвидус)	
Al 99.99	660	-	
Al 99,5	658	-	
AlMgMn	620	650	
AlMg2	620	650	
AlMg5	575	630	
AlMgSi0,5	585	650	
AlMgSi	590	640	

Механические свойства полуфабрикатов из сплава АД31Т1

Сравнение свойств алюминия и железа

Свойство	Единица измерения	Алюминий	Железо
Температура плавления	°C	660	1536
Скрытая теплота плавления	Дж/г	396	247
Удельная теплоемкость при 25°C	Дж/ (г К)	1,03	0,64
Теплопроводность при 25°C	Вт/ (м К)	230	74
Плотность при 25°C	г / см ³	2,7	7,9
Коэффициент темпера- туропроводности	м ² /ч	0,3	0,053
Отражательная способность лучистой энергии	%	90	58

Книги



www.apral.org

