

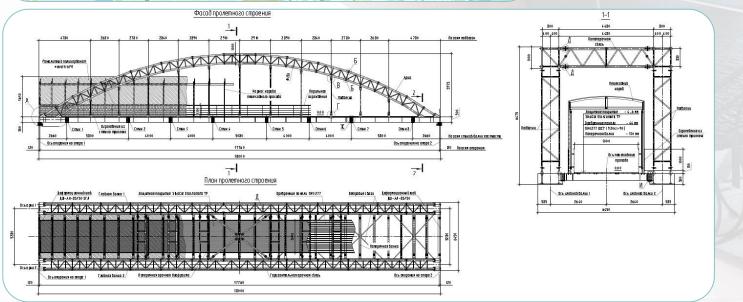
Презентация-доклад

«Реализация пилотного проекта пешеходного надземного перехода с пролетными строениями из алюминиевых сплавов в д. Афонино Нижегородской области. Проектирование»

Докладчик:

Генеральный директор ООО «Институт «Мориссот» ГРИГОРИЙ АЛЕКСЕЕВИЧ ЯРЛЫКОВ

Пересекая реки времени, мы создаём облик будущего!


- новые конструкции
- новые материалы
- новые технологии строительства и способы производства работ
- патенты
- участие в конференциях
- успешный опыт реализации

О поставленной задаче

Разработка рабочей документации металлических пролетных строений для строительства пешеходных мостов через автомобильную дорогу

О параметрах пролетного строения

- полная длина пролетного строения 38,0 м;
- расчетная схема пролетного строения арка с затяжкой;
- расстояние между главными арками **5,28 м**;
- высота до низа пролетного строения в свету от поверхности проезжей части **5,1м**;
- ширина прохожей части пролета **3,0 м**;
- высота прохожей части пролета **3,0 м**;
- материал основных конструкций пролетного строения алюминиевый сплав 1915Т.

- СНиП 2.05.03-84* "Мосты и трубы", СП 35.13330.2011 актуализированная редакция;
- СНиП 2.03.06-85 "Алюминиевые конструкции", СП 128.13330.2012 актуализированная редакция;
- Специальные технические условия на проектирование объекта «Строительство надземных пешеходных переходов в д. Афонино на автомобильной дороге (22 ОП РЗ 22К-0030) Восточный подъезд к г. Н. Новгород от а/д М-7 «Волга» в Кстовском районе Нижегородской области», разработанные АО «Центр технического и сметного нормирования в строительстве»

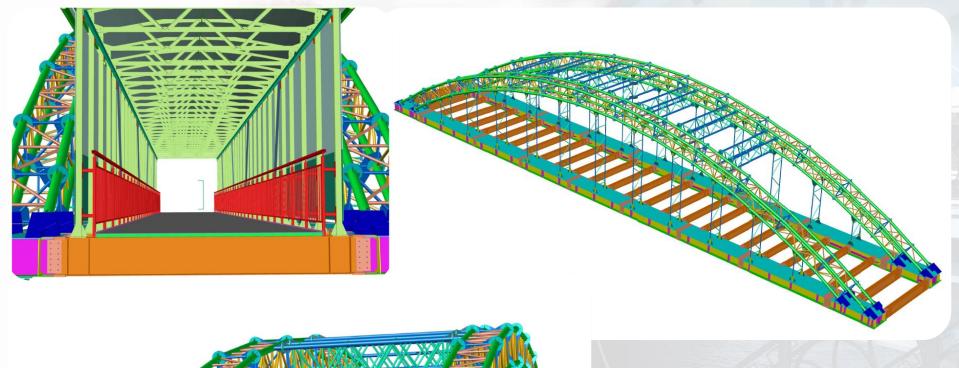
О сравнении стали и алюминиевых сплавов

Параметр	Јбозна- чение	Единица измерения	Сталь 15ХСНД	Алюминиевый сплав 1915Т
	00 5	EA N3M		Olivial To To T
Расчетное сопротивление растяжению, сжатию и изгибу	R	МПа (Н/мм²)	295	195
Расчетное сопротивление сдвигу (срезу)	Rs	МПа (Н/мм²)	171	120
Модуль упругости	Е	МПа (Н/мм²)	2,06x10 ⁵	0,7x10 ⁵
Модуль сдвига	G	МПа (Н/мм²)	0,78x10 ⁵	0,265x10 ⁵
Коэффициент температурного расширения	α	°C-1	0,12x10 ⁻⁴	0,23x10 ⁻⁴
Плотность	ρ	кг/м ³	7850	2770

О достоинствах алюминиевых сплавов

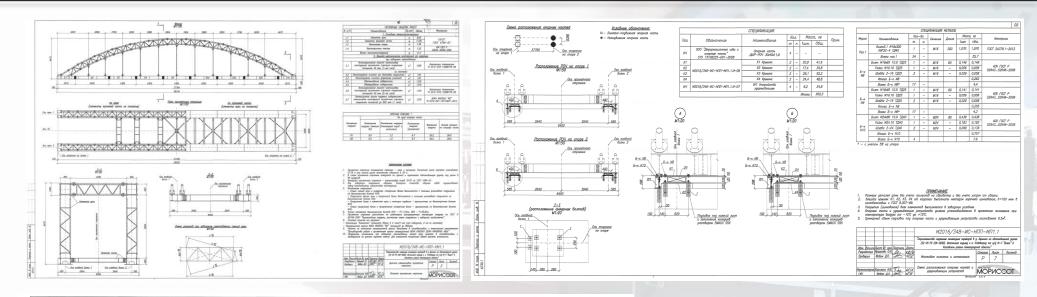
- удельная прочность (отношение расчетного сопротивления к плотности) алюминия и его сплавов выше чем у стали и бетона;
- высокая коррозионная стойкость избавляет от необходимости регулярного повторного окрашивания;
- прочность сплавов возрастает при снижении температуры;
- повышенная сейсмостойкость конструкций как следствие уменьшения веса и более высокой демпфирующей способности;
- низкие издержки по выполнению строительно-монтажных работ, как стоимостные, так и временные за счет малого удельного веса конструкций.

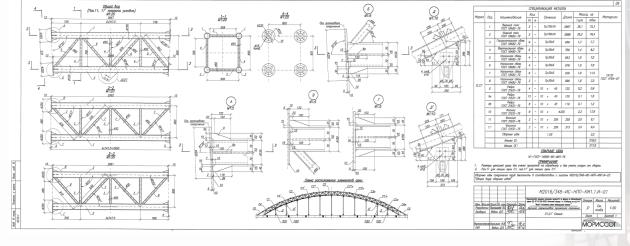
- вышеописанные достоинства;
- **снижение нагрузок на подлежащие конструкции** и как следствие уменьшение объемов работ по ним;
- снижение транспортных расходов;


HO!!!!

Легкая конструкция легко перемещается от внешних воздействий:

- ветровые нагрузки;
- сейсмические нагрузки;
- наезд транспортных средств;
- вандализм.





создание 3D модели и расчет элементов пролетного строения

О документации


конструирование и разработка рабочих чертежей

